
Chapter 4 
Architectures for Programmabl~ Digital 
Signal-Processing Devices 

4.1 Introduction 


In this chapter, architectural features of programmable DSP devices are de­
scribed based on the DSP operations these devices are generally required to 
perform. The features are examined from the points of view of functional 
needs, programmability, speed,and interfacing requirements of these devices. 
Commonly used hardware implementations are also described for various 
functional units. Following are the topics covered in this chapter: 

Basic architectural features 

PSP computational building blocks 

Bus architecture and memory 

Data addressing capabilities 

Address generation unit 

programmability and program execution 

Speed issues . 


Features forextt:rnal interfacing 


4.2 Basic Architectural Features 

A programmable DSP device should provide instru~tions similar to a micro­
processor. These instructions can then be used to design programs for im­
plementing DSP algorithms. The basic computational capabilities provided by 
way of instructions should include the following [1-3, 11]: 

• Arithmetic.operations such as add, subtract, and multiply. 


.• Logic operations such as AND, OR, XOR, and NOT. 
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• 	 MultiplY'and accumulate (MAC) operation. 

• 	 Signal scaling.operations for scaling'the signal before and/or after digital 
signal prQCessing. 

. . It is important that dedicated high-speed hardware be provided· to carry 
out these operations. For instance, multiply operation can be done much 
faster on a hardware multiplier than on a microcoded m~tiplier realized 
using the shift and add technique, as is often done in microprocessors. 

In addition to the computational units, support archit~cture should include 
the following hardware features [10]: 

• 	 On-chip registers for storage of intermediate results. 

• 	 On-chip memories for signal samples (RAM). 

• 	 On-chip program memory for programs and fixed data such as filter 
coefficients (ROM).' . 

I> Example 4.1 	 Investigate the basic features that should be provided in the DSP architecture 
to be used to implement the following Nth-order FIR filter: 

N-l 

y(n) = L h(i)x(n -i); n == 0, 1,2, ... (4.1) 
i=O 

where x(n) denotes the input sample; y(n), the output sample; and h(i), the ith 
filter coefficient. x(n - i) is the input sample i samples earlier than x(n). 

Solution The FIR filter requires the following basic features for implementing Eq. 4.1: 

1. 	 Memory for storage of signal samples x(n), x(ti -:- 1), ... , etc. (RAM).. 

2. 	 Memory for storage offilter coefficients: h(O), h(I); .•. , etc. (ROM). 

3. 	A hardware multiplier and an adder to carry out the multiply and accu­
mulate (MAC) operation. 

4. 	 A register to ke~p track of accumulation (accumulator). 

5. 	 A register to point to the current signal sample being used (signalpoin,ter). 

6. 	 A register to point to the current filter toefficient being used (coeffic'ient 
pointer). 

7. 	 A register to keep count of the MAC operations that remain to be done 
(counter). 

8. 	Capability to scale the signal value x(n) as itis read from the memory and 
the computed signal y(n) as it is stored in the memory (shifters at input 
and output). 

Computational units such as the multiplier, the arithmetic logic unit (ALU), 
shifters, etc. will be described in the next section. Subsequent sections will 
examine the other functional units such as, the memory, the addressing unit 
and the program execution unit. 
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4.3 DSP Computational Building Blocks 

I,n this section, we learn about the hardware building blocks that carry out the , 
basic DSP computations.'.While choosing these computational building blocks, 
we keep in mind the requirements of speed and accuracy, which are the two 
key issues iIi the design of DSP systems. At the same time, we should ensure 
that such -building blocks 'could be configured to implement many different 
applications. That is, while each building block should b~ optimized for func­
tionality and speed, the design should be sufficiently general so that it can be 
easily integrated with other blocks to implement overall DS1> systems. 

Following are-the basic building blocks that are essential to carry out DSP 
computations [5-9]: ' 

• Multiplier 

• Shifter 

• Multiply and accumulate (MAC) unit 

• Arithmetic logic unit 

In the following subsections, we shall discuss each of these blocks in detail. 

4.3.1 Multiplier 

The advent of single-chip multipliers and their integration into the micro­
processor architecture are the most important reasons for the availability of 
commercial VLSI chips capable of implementing DSP functions. These multi- . 
pliers, called parallel or array multipliers, implement complete multiplication, 
of two binary numbers, to generate the product in a single processor cycle. 
Earlier multiplication schemes relied either on software such as the shift and 
add algorithm or on microcoded controllers, which implement the same al­
gorithm in hardware. Both these options require several processor cycles tp 
complete the multiplication. The advances~Me in VLSI technology, both m 
.terms of speed and size, have made possible the hardware Implemturation of 
parallel multipliers. 
. From earlier chapters, it is apparent that multiplication is one of the key 
operations in implementing DSP functions. HoweVer, before we design' an 
actual multiplier, we should be dear about its specifications sJlch as speed, 
accuracy, and dynamic range. The number of bits used to represent the 
multiplication operands and whether they are represented in fixed-point or 
floating-point format decide the accuracy and dynamic range of the multi­
plier. The speed, on the other hand, is decided by the architecture employed. 
For ,a given technology, there are several architectures for parallel multipliers, 
which trade off speed for reductions in circuit complexity and power dissipa­
tion. The choice of the architecture depends on the application. 
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Figure 4.1(a) The 4 x 4 binary multiplication 

Parallel Multiplier 

Let us consider the multiplication of two unsigned nwnbers A and B. Let the 
nwnber A be represented using m bits (Am- 1Am- 2 ... Ao) and the nwnber B, 
using n bits (Bn- 1Bn- 2.•. Bo). The multiplicand A, the multiplier B, and the 
product P are given bY [4-6] 

m-l 
A= LAi2i (4.2) 

;=0 

n-l 

B = LBj2 j (4.3)· 
j=O 

"-1 [m-l 1P = ~ ~AiBj2i+j (4.4J 

and can have a maximwn of (m + n) bits. Each bit of the product P is 
obtained by a summation of bits AiBj using an array of single-bit adders. 
The bits A;Bj, where the index i takes on values from 0 to m - 1, and the 
index j from 0 to n:"- 1, are formed using AND gates. Figure 4.1(a) shows the 
multiplication operation using 4 bits for both A and B (A = A3A2AIAo and 
B = B3B2BIBo). Figure 4.1(b) shows the hardware structure of the multiplier 
for this eXample. The structure is regular and requires twelve 3 input, 2 output 
adders. It can be shown that for an n x n multiplier, the number of adders 
required is n(n - 1). 

Multiplier for Signed Numbers 

The multiplier shown in Figure 4.1(b) is known as Braun multiplier [7] and is 
the basis for most of today'scommercial implementations. Several improve­
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Figure 4.1(b) The structwe of a 4 ~ 4 Braun multiplier 

ments on this basic structure are possible and have been used to increase the 
speed and reduce the hardware complexity and power dissipation. We will not 
be dealing with. these variations here. However, we will consider one modifi­

. cation of the Braun structure, which is essential to carry out multiplication of 
signed numbers. 

Braun's multiplier does not take into account the signs of the numbers that 
are being muitiplied. Additional hardware is required before and after the 
multiplication when signed numbers, represented in 2's complement form, are 
used. It would be desirable to have a structure that can directly operate on 2's 
complement numbers. 

Consider two numbers A and B represented in 2's complement format. Let 
A have m bits and B, n bits. A andB can be written as follows: 

m-2 

A -Am_ 12
m- 1 +LAi2i (4.5) 

i=O 

n-2 . 

B -Bn_ 12
n

-
1 + LSj2 j (4.6) 

j=O 
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The product P Pm+n-I ... PIPo can be written as 

m-2 n-2 m-2' 

P Am- 1Bn-12 m+n-2 + 2: 2: AiBj2 i+j - 2: AiBn-I.2n-I+i 
i=O j=O i=O 

n-22: A - I Bj2m-1+j (4.7)m 

'j=O 

The two subtractions in Eq. 4.7 can be expressed as additions of 2's comple­
ment numbers. In doing so, Eq. 4.7 gets modified to an expressioI). with only 
additions and no subtractions and can then be implemented through a struc­
ture similar to the Braun multiplier rising only adders. The modified structure 
for handling signed numbers is called the Baugh-Wooley multiplier [8J. 

Speed 
The shift and add technique of multiplication normally used in micropro­
cessors requires n processor cycles to carry out an n x n multiplication. The 
cycle time is the time to access the operands, perform add and shift, and store 
the result in the product register. The parallel multiplier, on the other hand. 
is a fully combinational implementation, and once the operands are made 
available to the multiplier, the multiplication time is only the longest path 
delay time through the gates and adders. . 

Normally, one would want to achieve the highest possible speed of opera­
tion for a given DSP function. This would mean a multiplication time com­
parable to the processing times of other computational units as well as the 
access times of memories holrung the program and data. As memory tech­
nologyadvances, lower and lower access times are achieved. In order to make 
the best use of such speeds in a DSP' implementation. it w0uld be highly 
desjrable to design mUltipliers operating at the highest possible speeds. This is 
possible only with a fully parallel implementation. 

Bus Widths 

Consid~r a multiplier with inputs X and Y and the product Z. If X and Yare 
represented with n bits each, Z can have a maximum of 2n bits. Let us assume 
that both X and Y ·are in the memory and the product Z has also to be written 
back to the memory. A single-cycle execution of the multiplication will then 
require two buses of width n bits each (for X and Y) and a third bus of wil;ith 
2n bits (for' Z). This type of bus architecture is expensive to implement. A 
number of practical considerations, however, make it possible to realize ili:e 
multiplication with a less extensive bus architecture. First, the program bus 
can be used to transfer one of the operands (say. Y) after the· multiplication 
instiuction has been fetched from the progtam memory. This does not cause 
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an additional overhead when repeated multiplications are carried out, as is 
generally the case with many DSP algorithms. This is because, the instruction, 
once fetched, usually resides in an on~chip cache. Second, it separate bus for 
the product Z can be dispensed with, since one of the buses (say, that of X) 
can be used to transfer the product to the memory as the operand X would 
have been latched long before the product Z is made available. To handle the 
2n bits of Z, there are two available alternatives: 

a. 	 Use the X bus (n bits) and save Z at two successive memory locations 
using two memory accesses. 

b. Discard the lower n bits of Z and save only the higher n bits. This is the 
option most often used since one of the two operands X and Y (usually 
Y) is normalized to one before multiplication so that the n bits dis­
carded from Z are the less significant fractional bits. However, if the 
product· Z is to be further processed (e.g., added to the previous result 
as is the case in a multiply and accumulate operation), all 2n bits of 
the product Z are retained and passed on to the next stage to retain the 
accuracy of the product. The decision on discarding lower-order bits 
or saving the entire word is made. after the accumulation process is 
completed. 

For applications in which speed is not the main issue, buffers and latches 
may be provided at inputs and the output, as shown in Figure 4.2. A single bus 
cari then be used to preload the operands in the input latches before the mul­
tiplication and transfer the result from the output latches/buffers to the 
memory or the next stage, if necessary in two cycles after the multiplication. 

Data bus . 

~7n 

I
rtn1 X 

7:;­ y 

/ n 

.... 

Multiplier ~ Z ~ 
.... • 

X, Y, Z are latel est buffers 

Figure 4.2 A multiplier with input and output latcheslbuffers 
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4.3.2 Shifter 

Shifter is an essential component of any DSP architecture. Shifters are re­
quired to scale, down or scale up operands and results to avoid errors resulting 
from overflows and underflows during computations. Let us consideJ the fol­
lowing cases: 

a. 	 It is required to compute the sum of N numbers, each represented by n 
bits. As the accumulated sum grows, the number of bits required repre­
senting it increase~. The maximum number of bits to which the sum can 
grow is (n + logz N) bits. However, if each of the N numbers is scaled 
down by logz N bits prior to the addition, the loss of the result due to 
.overflow can be avoided. The accumulator will then hold the sum scaled 
down, by logz N bits. Although the accuracy of the sum is reduced be­
cause of the loss of logz N lower-order bits, the summation would be 
completed without the occurrence of the overflow error. The actual sum 
can be obtained' by scaling up the result by logz N bits, when required. 

b. When two 	 numbers, each represented by n bits, are multiplied, the 
product can have a maximum of 2nbits. When this product is saved in 
memory, which is also n bits wide, the lower-order n bits are generally 
discarded, resulting in 16ss' of accuracy. However, in the case of multi­
plication of two signed numbers, the accuracy can be slightly improved 
by shifting the product by one bit position to the left before saving the n 
higher-order bits. This is because the 2n-bit product will have two sign 
bits, .and even after discarding one of them (by a single-bit left shift), the 
sign of the product is still pres~rved. The accuracy improves because, 
instead of discarding all th~ n lower-order bits, we now discard only 
(n 1) bits. 

c. 	 When carrying out floating-point additions, the operands shouid be 
normalized to have the same exponent. This is accomplished by shifting 
one of the operands by the required number of bit positions so that it 
has the same exponent as the other operand. 

The cases illustrated above are examples of situations that require shifting 
of data while implementing DSP operations. 

[> Example 4.2 	 It is required to find the sum of 64 numberseach represented by 16 bits. How 
many bits should the accumul.~tor have so that the sum can be computed 
without the occurrence of overflow error or loss of accuracy? 

Solution 	 When 64 numbers are added, the sum can grow by a maximum of logz 64 = 
6 bits. To avoid overflow, the total number of bits the, accumulator should 
have is 16 + 6 = 22. 
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. l> Example 4.3 

Solution 

If, for the problem of Example 4.2, it is decided to have an accumulator with 
only 16 bits but shift the numbers before the addition t6 prevent overfl6w, by 
how many bits sh!Juld each number be shifted? 

Since the sum can grow by 6 bits, in order to prevent overflow, each number 
should be shifted by 6 bits to the right before the addition. 

l> Example 4.4 If all the numbers in the problem of Example 4.3 are fixed-point integers, what 
is the actual sum of the numbers? 

Solution Since each number has been shifted to the right by 6 bits, the sum should be 
shifted left by 6 positions to get the actual value. 

The actual sum = (content of the accumulator) x 26 

l> Example 4.5 What is the error in the computation of the sum in the problem of Example 
4.4? 

Solution Since the six lowest significant bits have been lost in tl1e process of summa­
tion, the sum could be off by as much as 26 - 1 63. 

Barrel Shifter 

In conventional microprocessors shifting is normally implemented by an op­
eration similar to the one performed in a shift register. The operation takes 
one clock cycle for every single bit shift. Such Ii scheme requires unduly large 
amounts of time to implement multibit shifts, which are generally required 
in DSP computations, In DSPs, on the other hand, in order to preserve the 
computational speed of single-cycle instruction execution, shifts by several 
bits should be accomplished in a single cycle. This is possible by a combina­
tional circuit known as the barrel shifter. The barrel shifter connects the input 
lines representing a word to a group' of output lines with the required shift 
determined by its control inputs, as shown in Figure 4.3(a). Control input also 
determines the direction of the shift (left or right). If the input word has n 
bits, and shifts from 0 to n 1 bit positions to the right or left are to be im­
plemented, the control input requires log2n lines to determine the number of 
bits to be shifted. Further, an additional line is also required for the control 
input to indicate the direction of Ithe shift. In practice, however, the direction 
of shift is usually fixed, with the result that only log2 n lines are required for 
the control input. Bits shifted out of the input word are discarded and the new 
bit 'positions are filled with zeros in the case of left shift. In the case of right 
shift, the new bit positions are replicated with the most significant bit to 
maintain the sign of the shifted result. 

Figure 4.3(b) shows animplerrientation of a barrel shifter with four input 
bits, (A3A2AIAo) and four output bits (B3B2BIBo). Using this shifter, it is 
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possible to realize right shift by 0, I, 2, or 3 bit positions by setting the control 
inputs (So, S1> S2, or S3) high, respectiv~ly. Only one of the control inputs can 
be high at any time and this input closes all the switches controlled by it and 
enables the appropriate paths between the inputs and the outputs. 

Since the circuit for a barrel shifter is a combinational logic circuit, the time 
taken to implement the shift is the total combinational delay involved in de­
coding the, control lines and setting up the path from the input lines to the . 

. output lines. This delay is only a fraction of a clock cyde. In fact, in practical 
DSPs, shifting is combined with data transfer. Both operations are executed in 
a single clock cyde. ' 

I> Example 4.6 A barrel shifter is to be designed with 16 inputs for left shifts from 0 to 15 bits. 
How ma,ny control lines are required to implement the shifter? 

Solution The number of control lines required is four, since 4 bits are needed to code 
any number between 0 and 15, the. range over which the shift is required to be 
accomplil>hed. 

4.3.3 Multiply and Accumulate (MAC) Unit 

Most DSP applications such as filtets require the accumulation of the products 
of a series of successive multiplications. In order to implement this accumu­
lation; we need an add/subtract unit' and an additional register called the 
accumulator at the output of the multiplier. The configuration of such a mul­
tiply and accumulate unit, commonly known as the MAC unit, is shown in 
Figure 4.4.. 

The MAC unit consists of a multiplier that multiplies two n-bit numbers X 
and Y and gives a product 2n bits wide. This is added to or subtracted from 
the contents of the accumulator in the add/sub unit. The result is saved in the 
accumulator. The MAC unit can thus be used'to implement functions of the 
type A +Be. If the accumulator is cleared at the start of a series of multi­
plications, it will contain the accumulated sum of the products on completion 
of all the multiplications. 

Although multiplication and accumulation are two distinct operations, each 
normally requiring a separate instruction execution cycle, the two can work in 
parallel. At a time when the multiplier is computing a product, the accumula­
tor accumulates the product of the previous multiplication. If N products are 
to be accumulated, N - 1 multiplies can overlap with accumulations. During 
the very first multiply, the accumulator is idle since there is nothing to accu­
mulate. Likewise, during the very last accumulation, the multiplier is idle since 
all the N products have been computed. Thus it takes a total of N + 1 in­
struction execution cycles to compute the sum of products of N multiplica­
tions. If N is large, this works out to a speed of nearly one multiply and 
accumulate (MAC) operation per instruction execution cycle .. This pipelined 
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Figure 4.4 A MAC unit 

operation of a multiplier and .an accumulator working in parallel to effectively 
execute a MAC operation per cycle is a standard feature of ma~y commercial 
DSP devices. 

t> Example 4.7 

Solution 

If a sum of 256 products is to be computed using a pipelined MAC unit, and if 
the MAC execution time of the unit is 100 nsec, what will be the total time 
required to complete the operation? 

To carry: out 256 MAC operations, 257 execution cycles are required. 

The total time required = 257 x 100 x 10-9 sec = 25.7 Ilsec. 

Overflow and Underflow 

When designing a MAC unit, one has to pay attention to the word sizes en­
countered at the input of the multiplier and the sizes of the addlsubtractunit 
and the accumulator, as overflow and underflow conditions may be encoun­
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tered otherwise. Provision of barrel shifters at the inputs and the output of the 
MAC unit, provision of guard bits in the accumulator, and provision of satu­
ration logic are ~e frequently used techniques to prevent overflow and 00-" 
derflow conditions from occurring in the MAC unit. Now let us consider each 
of these provisions in detail. ' 

Shifters 

Shifters are normally providedat the inputs and the output of the MAC unit. 

The input shifters help to normalize data samples andlor filter coefficients as 


, they are fed into the multiplier, to avoid overflow of the accumulated result at 

the output. Likewise, the shifter at the output is used to denormalize the result 

after the sum of products computation,'before being saved in the memory. In 


. addition, the outpUt shifter may also be u~ed to discard the redundant sign bit 
in 2's complement product or to shift the output by the required number of 
positions before saving to preserve th~ maximum possible accuracy. This is 
done when the number to be saved is preceded by several leading Os or Is. 
As shifters provided in the MAC unit are typically barrel shifters, they do not 
require additional clock cycles to implement the shifts. 

Guard Bits 

Sometimes, in order to preserve accuracy, the inputs to the multiplier are not 
normalized. In such a case, when repetitive MAC, operations are performed, 
the accumulated sum grows with each' MAC operation. This increases' the 
number of bits required to represent the result without loss of accuracy. One 
way to handle this growth is to provide extra bits in the accumulator. These 
extra bits, called guard bits or extension bits, allow for the growth of the ac­
cumulated sum as more and more product terms are added, up. When the 
computation of the required sum of products is completed, the extension bits 
may be saved as a separate word, if required. Alternatively, the sum along with 
the guard bits may be shifted by the required amount and saved as a single 
word. When guard bits are provided in the accumulator, the size oft;he add! 
subtract uQit also, increases correspondingly. 

I> Example 4.8 	 Consider a MAC units whose inputs are 16-bit numbers. 1£256 products are to 
be summed up in this MAC. how many guard bits should be provided for the 
accumulator to prevent overflowcondition'from occurring? 

Solution 	 In general, the product of a 16 x 16 multiplication has 32 bits. Since 256 such 
products are ·to be summed, the sum can grow by a maximum of log2 256 
6 bits. Therefore, the number of guard bits required to prevent the occurrence 
of overflow is 8. 
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Figure 4.5 A MAC unit with accumulator guard bits 

Figure 4.5 shows a block diagram of the MAC unit with guard bits for this 
example. 

Saturation Logic 

With or without guard bits, an,overflow condition occurs when the accumu­
lated result becomes larger than the largest number it can hold. Likewise, 
when handling a negative number, an underflow will occur if the contents of 
the accumulator become smaller than the smallest number it can hold. Iii. 
such situations, it may be better to limit the accumulator contents to the most 
positive (or the most negative) value to avoid an error known as the wrap­
around error. 

Limiting the accumulator contents to its saturation limits is achieved with 
a simple logic circuit called the saturation logic. The circuit, shown in Figure 
4.6, detects the overflow and underflow condition and accordingly loads the 
accumulator with the most positive or the most negative value, overriding the 
value computed by the MAC unit. The overfloW/underflow condition is de­
tected by monitoring the carry into the MSB and the carry out of the MSB. If 
carry-in is not equal to carry-out, the overflow/underflow condition occurs. 
The selection between the most negative and the most positive numbers 'is 
made based on the sign bit of the number. 
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Figure 4.6 A schematic diagram of the saturation 

4.3.4 Arithmetic and Logic Unit 

In addition to shift, multiply, and multiply.and-accumulate (MAC) opera­
tions, a DSP'is required to carry out several arithmetic and logic operations. 
These are the operations, such as· add, subtract, increment, decrement, negate, 
AND,OR, NOT, EXOR, and· compare, that are also implemented in a conven­
tional microprocessor. This means that the ALU of a DSP is similar to the 

.. ALU of a microprocessor butwith additional features such as shift and mul­
tiplydiscussed in the earlier sections. Figure 4.7 shows the block. diagram of 
the ALUof a typical DSP device. 

Apart from providing arithmetic, and logic' functions, the design of an 
ALU for a DSP incorporates several other features borrowed from,a general­
purpose microprocessor. Three of these features are discussed next 

Status Flags 

It is important to know the status of the accumulator after arithmetic or. a 
logic operation. This information is used for program sequencing and scaling. 
The ALU irlcludes circuitry to generate status flags after arithmetic and logic 
operations. These flags include sign, zero, carry, and overflow. For instance, if 
the execution of an instruction results in overflow, the overflow flag is set; 
otherwise it is reset. 

Overflow Management 

Features similar to those explained in the previous section on MAC are also, 
r~quired in the ALU for overflow management .. These features are generally 
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Figure 4.7 Block diagram of an arithmetic logic unit 

combined with the status fl.ags. For example, depending on the status of the 
overfl.ow and the sign fl.ags, the saturation logic can come into effect to limit 
the accumulator contents to its most positive or the most negative value. 

Reg ister ,file 

A feature tlnll improves the efficiency of an ALU is the implementation of a 
large generaJ.~p~rpose· register file. Instead of moving data in and out of the 
ALU to memory during the course of an arithmetic computation, it may be 
faster to have intermediate results of arithmetic computations stored in the 
ALU until the computation is complete and the result is ready to be saved. 
This is possible by providing a file of general-purpose registers in addition to 
the accumulator as part of the ALU architecture.. 

http:overfl.ow
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4.4 Bus Architecture and Memory 

In conventional microprocessors, the von Neumann architecture is used, 
wherein the program and the data reside in the same memory and a single bus 
(Address + Data) is used to access both, as is shown in Figure 4.8(a). This 
slows down the program execution considerably as the processor has to wait 
for the data even after the instruction is made available to it. In order to avoid 
this waiting and to speed up the program execution, it is desirable to have the 
program and data reside in two separate memories and have two buses for 
the processor to access the two memories. This modification, which is called 
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Processor Memory 
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(a) 

Figure 4.8(a) The bus structure of von Neumann architecture 
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Figure 4.8(b) The bus structure of Harvard architecture 
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Figure 4.8(c) 	 The bus structure for the archite.cture with one program memory and two data 
memories 

the Harvar.d architecture, is shown in Figure 4.8(b). In fact, even this may not· 
solve the problem completely. For example, the m.ultiplication op~ration °re­

. quires two operands to be fetched from the memory; one may be a qata.sam­
pIe and the other, a coefficient. Even with separate memori.es fOl'.the'program 
and data, it is not possible to fetch the two operands required f9r th. multi­
plication along with the program instruction, and the processor has to 'wait for 
the second operand. It would therefore be required to provide dual data 
memories (for data and filter coefficients, for example) in addition to' program 
memory and provide each with a separate bus for the processor to access 
them simultaneously. Figure 4.8(c) shows a possible bus structure of this type. 
As we can see, this will require a lot of hardware and interconnections to im­
plement, thereby increasing'the cost; Therefore,'a compromise solution needs 
to be found to strike a balance between the hardware complexity and speed 
requirement of the multiplication operation, which, is the most critical DSP 
operation in terms of the overall speed of algorithm implementation: 

http:memori.es
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4.4. 1 On~Chip Memory 

A co.mpro.mise between having multiple memo.ries with individual buses fo.r 
each and having fewer memo.ries and buses is to. provide. some o.f the memo.­
ries alo.ng with their buses o.n~chip. Even tho.ugh the pro.cessor has to. make 
simultaneo.us accesses to all the memo.ries, o.nly so.me o.fthese are to. the mem­
o.ries external to the DSP, thereby reducing the interco.nnectio.n requirements 
to' external devices. ' 

On-chip. memo.ries help in running DSP algo.rithms faster than when the 
memo.ries' are lo.cated o.ff-chip. This is because o.n-chip memo.ries can have 
dedicated address and data buses unlike o.ff-chip memo.ries, who.se buses 
are o.ften multiplexed to. reduce the pin count o.n the DSP. There are several 
issues related to. the design o.f o.n-chip memo.ries; two o.f these are co.nsidered 
next. 

Speed 

The o.n-chip memo.ries sho.uld match the speeds, o.f the ALU o.peratio.ns in 
o.rder to. maintain the single-cycle instructio.n executio.n requirement o.f the 
DSP. Ho.wever, this is no.t a serio.us co.nstraint because executio.n times o.f 
co.mplex arithmetic o.peratio.ns such as multiplicatio.n are generally Io.nger 
than memo.ry access times. In fact, very o.ften, mo.re memo.ry accesses than 
o.ne are po.ssible within a single instructio.n cycle, as will be explained later. 

Size 

Size is a majo.r co.nstraint fo.r on-chip memo.ries. In a given area o.f a DSP chip 
as many DSP functio.ns as' po.ssible must be packed in o.rder to. get the best 
Po.ssible perfo.rmance. On the o.ther hand, the mo.re area occupied by the o.n- . 
chip memo.ry. the less will be the area available fo.r ~e o.ther func:tio.ns.The 
sizes o.f the o.n-chip memo.ries are bptimized taking into. acco.unt the speed 
advantage, but witho.ut co.mpro.mising any essential features required o.n the 
DSP. 

4.4.2 Organization of the On~Chip Memory 

Ideally, the entire memo.ryrequired to. implement a DSP algo.rithm sho.uld re­
side o.n-chip. This means, that the o.n-chip memo.ry sho.uld be partitio.ned into. 
pro.gram and data spaces. If necessary, the data memo.ry should be further 
divided into. separate areas for sto.ring data samples, co.efficients, and results. 
This way, an instructio.n with two. o.perands can be fetched and executed and 
the result saved all in a single cycle. Writing the pro.gram and data intothe 
o.n-chip memo.ries is done befo.re'the program executio.n.. Likewise, the results 

http:witho.ut
http:functio.ns
http:o.peratio.ns
http:serio.us
http:o.peratio.ns
http:simultaneo.us
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are read off the on-chip memory after the program execution is completed. 
However, . this scheme is not practical because the different memory blocks 
and their buses take an enormous amount of chip area, thereby limiting the 
scope of other functions that are to be provided on the chip. There are several 
other ways in which the on-chip memory can be organized efficiently and ina 
cost-effective manner. 

1. 	Many DSP algorithms require repeated executions of a single instruction 
such as the multiply and accumulate or a loop consisting of a few in­
structions. The result is normally saved only after the repetitions are 
completed. It is, therefore, sufficient to provide only two blocks of on­
chip memories to hold the operands required for the execution of the 
instructions. The instruction or instructions required to carry out the 
repetitive calculations can reside in the external memory and, once 
fetched, can be repetitively used by keeping them in an . instruction 
cache. Since the result is to be saved less frequently, there is no need to 
provide a separate memory for this purpose. 

2. 	On-chip memories can be designed such that they can be accessed 
more than once in an instruction cycle. This way, fewer memory blocks 
can serve to hold the program, the operands, and results. This means 
that their access times should be sufficiently small to match the tim­
ing requirements of single-cycle instruction execution. Considering the 
advances made·in memory design technology, it is possible to integrate 
dual-access on-chip memories on today's commercial DSPs. For exam­
ple, let us assume that there are two on-chip memories and two buses in 
a DSP device. If each of these memories is fast enough to be accessed 
twice in each instruction cycle, execution of a multiply instruction that 
includes an instruction fetch, two operand fetches, and a memory access 
to save the result can be completed in one clock cycle. 

3. 	On-chip memories can be configured for different uses at different times 
. 	 dependiI1.g on the requirements. For example, if a DSP has t\vo blocks of 

on-chip memory, ordinarily one of them will be configured ~ program 
memory and the other as the data memory. However, for exe~ution of 
instructions, which requires two operands to be fetched simultaneously, 
they can both be configured as data memories. The instruction itself 
can be fetched from an external memory or it can reside' in an on-chip 
cache. . 

In addition to program memory and data memories, DSP architecture 
should provide for a separate stack that can be directly accessed by the pro­

.. gram counter. This provision can considerably reduce the overhea:ds during 
, the subroutine an~ interrupt calls and returns. If the cost becomes an issue in 

the I:hoice of access times required for memories in a multiple memory sys­
tem, it is preferable to provide faster memories for those segments that are 
more frequently accessed than the others. 
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4.5 Data Addressing Capabilities 

The"data processed by a digital signal-processing scheme typically consist of 
signal samples and filter coefficients. An efficient way of accessing data while 
performing computations can go a long way in the overall performance of an 
implementation. The provision of flexibility in accessing data helps in writing 
efficient programs for various applications. The data addressing capability -of a 
programmable DSP device is provided by means of its addressing modes. The 
addressing modes that can enhance DSP implementations consist of immedi­
ate,register, direct, and indirect addressing modes. We now discuss each of 
these modes. These modes are summarized in Table 4.1. 

Table 4.1 Summary of DSP Addressing Modes 

Addressing Sample 
Mode Operand Format Operation 

Immediate Immediate value ADD#imm #imm+A A 

Register Register contents ADD reg reg + A ..... A 

Direct Me.mory address contents ADDmem mem+A ..... A 

Indirect Memory contents with ADD *addrreg *addrreg+A A 
address in the register 

Notations used in describing the operation in the table: 

#imm = value represented by imm, 

reg = contents of register reg. 

mem contents of memory location with address mem, and 

*addrreg = contents of memory location whose address is the contepts of address 

register addrreg, 

..... represents the transfer from left to right. 


4.5.1 Immediate Addressing Mode 

The capability to include data as part of the instruction is provided by the 
immediate addressing mode. For example; a DSP processor may allow the 
programmer to write the instruction 

ADD #imm 

to ,add the value represented by imm to the accumulator register, A. In other 
words, the operation 

#imm+A -7 A 

is implemented. In such' an addressing mode data has to be a fixed number 
known at the time of writing instructions. Filter coefficients are examples of 
this kind of data. 
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4.5.2 Register Addressing Mode' 

In the register addressing mode a processor register provides the operand. 
Using this addressing mode the DSP processor may provide an instruction 

ADD reg 

to implement 

reg+A -+ A 

4.5.3 . Direct Addressing Mode 

In the direct addressing mode a memory operand is specified by providing its 
memory address. For instance a DSP processor may allow an instructio~ 

,ADD mem 

to implement 

mem +'A -+ A 

A signal sample stored in a memory location can be accessed using direct 
addressing mode. This mode. however. requires an explicit knoWledg~ of the 
memory address. memo . 

4.5.4 Indirect Addressing Mode 

In the indirect addressing mode an operand is accessed usin~ a pointer. A 
pointer is typically a z:egister that holds the address of.the location where the 
operand resides. For example. to add to the accumulator. A. the content of the 
memory location whose address is held in addrreg.the following'Instruction is 
implemented: 

ADD *addrreg 

which means 

*addrreg +A -+A 

In order to use this. addressing mode; addrreg needs to be loaded before the 
use. Any memory location can be accessed by simply changing the register 
contents. 

. The indirect addressing mode caD. be enhanced by providing an automatic 
capability to manipulate the pointer register just before (pre) or just· after 
(post) the use. The pointer register may be incremented or decremented. It 

-.--~-.---
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may also be possible to add or subtract the contents ofanother register (offset 
register) provided in the architecture. This leads to the following enhanced 
indirect addressing modes: 

PosCincrement addressing mode, 


PosCdecrement addressing mode, 


Pre_increment addressing mode, 


Pre_decrement addressing mode, 


PosCoffseCadd addressing mode, 


PosCoffsecsubtract addressing mode, 


Pre_offsecadd addressing mode, and 


Pre_offsecsubtract addressing mode. 


These enhanced indirect addressing modes, !!r~ ~~~m~rized in Table 4.2. 

Table 4.~ Enhancements to Indirect Addressing Mode 

Addressing Mode Sample Format Operation 

PosUncrement ADD *addrreg+ 

PosCdecrement ADD *addrreg-, 

: Pre_increment ADD +*addrreg 

Pre_decrement ADD *addrreg 

Poscadd_offset ADD *addrreg, offsetreg+ 

A+­

A +*addrreg, 


addrreg+­


addrreg+ 1 


A+-· 

A +*addrreg, 


addrreg+- . 


addrreg- 1 


addrreg+­


addrreg+ 1, 


A+­

A +*addrreg 


addrreg+­


addrreg- i, 


A+­

A+ *addrreg 


. A+­

A + *addrreg, 

addrreg +- addrreg + offsetreg 

(continued) 
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Table 4.2 Ccmtinued 

Addressing Mode Sample Format 	 Operation 

PoscsubtracCoffset ADD *addrreg, ojJsetreg- A<­

A + *addrreg, 

addrreg <-. 

addrreg - offsetreg 

Pre_add_ojJset ADD offsetreg+, *addrreg 	 addrreg+­

addrreg + offsetreg, 

A<­

A +*addrreg 

Pre,-sJbtraccojJset ADD ojJsetreg-, *addrreg addrreg<­

addrreg offsetreg, 

A<­

A +*addrieg 

In order to realize the indirect addressing mode and its enhanced versions 
in a DSP architecture, additional hardware operating in conjunction with its 
addressing unit is required. For example to provide pre_offsecadd addressing 
mode, an a3der· and· another register to hold the offset are ne.eded. It also 
means extra time for operand accessing or, alternatively, the need for com­
puting the operand address using a dedicated address arithmetic unit working 
in parallel with the main arithmetic unit. 

I> Example 4.9 What are the memory addresses of the operands in each of the following 
cases of indirect addressing modes? In each case, what will be the content of 
the addrreg after the memory access? Assume that the initial contents of the 
addrreg and the·0ffsetreg are 0200h and OOlOh, respectively .. 

a. ADD *addrreg-. 

b. ADD+ *addrreg 

Table 4.3 Solution fol' Example 4.9 

lnstruction 
Addressing 
Mode Operand Address 

Contents of addrreg 
after the Memory 
Access 

a PosCdecrement 0200h 0200h- Ih =OlFFh 

b Pre...:.increment 0200h + Ih = 0201h 0201h 

d Pre_add_offset 0200h + lOh 0210h 0210h 

d PosCsubtracCoffset 0200h 0200h ­ lOh = OlFOh 
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c. ADD offsetreg+, *addrreg 

d. ADD *addrreg, offsetreg-

Solution The sohltion is given in Table 4.3. 

4.5.5 Special Addressing Modes 

In addition to the addressing modes mentioned earlier, special addressing 
modes are provided in the architecture of a DSP to implement real-time signal 
processing and to compute DFT using FFT algorithms. Real-time signal proc­
essing is enhanced by the provision ofa circular buffer and the addressing 
mode that goes with it. The FFT implementation requires data to be accessed 
,in a nonsequential, yet regular, manner. The data for FFT is accessed by what 
is called as bit-reversed index. A bit-reversed addr~ssing mode is generally 
provided in the architecture to support FFT implementations. Similarly, to 
proce!;stwo-dimensional data, it will be .advantageous to provide a special 
addressing mode that can help access data· organized in a matrix form. Now 
we consider two of these special addressing modes. 

Circular Addressing Mode 

The provision of a circular buffer allows one to handle a continuous' stream of 
incoming data samples. In acircular buffer, successive data samples are stored 
in sequential buffer locations until the end of the buffer is reached. After 
reaching the end we start all over from the beginning, of the buffer. This pro­
cess can go on forever as long as the data samples get processed in a timely 

. manner at a rate faster than the incoming data. To access a data sample from a 
circular buffer, a circular addressing mode is of great help. The implementation 
of such an addressing mode in hardware requires three registers: a pointer reg­
ister (PNTR) to keep track of current address, a start, address register (SAR) to 
hold the start address of the buffer, and an end address register (EAR) to hold 
the end address of the buffer. The pointer register should have the capability of 
getting incr~mented/decremented. Different forms of the indirect addressing 
mode for the pointer register are required in order to update the pointer for 
different applications. The pointer~updating algorithm is given in Figure 4.9. 

The different cases that are encountered during the updating process of the 
pointer are shown in Figure 4.10. These cases are: 

1. SAR < EAR, and updated PNTR > EAR 

2. SAR < EAR, and updated PNTR < SAR 

3. SAR > EAR, and updated PNTR > SAR 

4. SAR > EAR, and updated PNTR < EAR 

The buffer size in the first two cases = (EAR - SAR + 1) and in the last two it 
is = (SAR - EAR + 1). 
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; Pointer Updating 	Algorithm for the Circular Addressing Mode 

Updated PNTR +- PNTR ± increment 
If SAR < EAR 

and .if Updated PNTR > .EAR, then 
New PNTR +- Updated PNTR - Buffer size 

and if Updated PNTR < SAR, then 
New PNTR +- UpdatedPNTR,+ Buffer size 

If SAR > EAR 
and if Updated PNTR'> SAR. then 

NewPNTR +-UpdatedPNTR - ·Buffer size 
and if ,Updated PNTR < EAR, then 

, New PNTR +- UpdatedPNTR + Buffer si ze 
Else 

New PNTR +-Updated PNTR 

Figure 4.9 	 Register pointer updating algorithm for circular buffer addressing mode. 
SAR = start address register contents, EAR = end address register contents, 
PNTR = pointer' , ' 

[> Example 4.10 	 A DSP has a circular buffer with the start and the end addresses as 0200h and 
020Fh, respectively. What woUld be the new values of the address pointer of 
the buffer if, in the course of address computation, it gets updated to (a) 
'0212h, (b) OlFCh? 

Solution 

The bUffer length = 020Fh - 0200h + 1 = 10h 

, ,a. The new value of the pointer is updated value - buffer length, i.e., 
0212h-0010h 0202h. 

b. The 	 new value of the pointer is updated value + buffer length, i.e" 
OlFCh + 0010h .-:- 020Ch. 

[> Example 4.11 

"Solution 

Repeat the pr~blem of Example 4.10 if the start and end addresses of the cir­
cular buffer are 0210h and 0201h, respectively. . 

a. 	The new value of the pointer is the updated value - buffer length, i.e., 
0212h - 0010h = 0202h. 

b. The new value of the ,pointer is the updated value + buffer length, i.e., 
OlFCh + OOloh = 020Ch. 

Note that these values are the same as those in the previous example. This 
shows th'at in a '-circular buffer, the address pointer wraps around to point to 
an address inside the buffer, irrespective of whether the buffer start address is 
hi~er or the end address is higher. 
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Low address 

SAR .. , 

NewPNTR ... 1 J"Equal 
EAR ...1 -1/ 

Updated PNTR ..'nnnmj} 
High address 

Case 1: SAR < EAR, and Updated PNTR > EAR 

Low address 

High-address 

Case. 2: _SAR < EAR, and Updated PNTR < SAR 

Figure 4.10 	 Different cases that arise in updating the pointer in circular buffer addressing 
mode (continued) 

Bit-Reversed Addressing Mode 

Special data access capability is needed in the FFT algorithm implementation. 
In the algorithm called decimation in time (DIT) FFT, the natnrally ordered 
data needs to be accessed according to the indices, as shown in Table 4.4 for 



88 Chapter 4 Architectures forProgrammal;>le Digital Signal-Processing Devices 

EAR 

NewPNTR 

SAR 

Updated PNTR 

Low address 

"I :}".. ' 
Equal 

... I . 
I } / 

.. 

High address 

Case 3: SAR > EAR, and Updated PNTR > SAR 

LoW address 

Updated PNTR "---------, } 
EAR " Equal... 

NewPNTR .. I 1··/
}

SAR .. 
Hi~address 

Case 4: SAR > EAR, and Updated PNTR < EAR 

. figure 4.10 Contin'ued 

an 8-point FFT. That is. in the case of an 8-point FFT. the input data x{O). 
x(I).x(2),x(3). x(4). x(S), x(6). and x(7) need to be accessed in the order x(O), 
x(4),x(2), x(6). x(l), xes). x(S), and x(7). The interesting point is that the 
indices describing the order of data. access can be obtained as follows: start 
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Table 4.4 Index Computation Using Bit-Reversed Addressing Mode for an 8-point FFT 

Input Index Output Index 
(natural order) (bit-reversed order) 

000=0 	 000= 0 

001 = 1 	 100 4 

010 2 	 010 = 2 

011 = 3 	 110=6 

100= 4 	 001 

101 = 5 101 = 5 

110 = 6 011 3 

III 7 111 = 7 

with index 0, obtain each current index by adding (in a special way) half the 
size of the FFT to th~ corresponding previous index, i.e., 

Current ,index = previous index + B(l/2(FFT size» (4.8) 

The addition J;towever, is different in the sense that during addition the carry 
must propagate from the most significant to the least significant bit. 

The reverse-carry-add operation can be provided in: the architecture to 
implement this special addressing mode. The architecture will require a regis­
ter to keep track of the index at any time in addition to the capability to 
propagate the carry in the reverse direction during the add operation in order 
to generate the next index to be used to access data. To provide this capability 
in parallel with the instruction execution, a special address generation unit is 
employed. 

t>Example 4.12 	 Compute the sequence in which .the input data should be ordered for a 16­
point DIT FFT. 

Solution 	 Assuming that the first sample .is located at address O,the next sample should 
be located at address 0+ B(length of FFT/2) = 0 +8 = 8. This address can be 
arrived at by carrying out binary addition with reverse carry propagation as 
follows:. 

Initial address in binary = 0000 

Half the length of the 'FFT in binary = 1000 

Next address (add with reverse carry propagation) = 1000 

To compute the address of the third sample, repeat the operation. 

Initial address in. binary 1000 
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Half the length of the FFT in binary = 1000 

Next address '(add with :reverse carry propagation) 0100 

The process is repeated until the addresses of all the 16 samples are computed. 
Table 4.5 gives the results. 

Table 4.5 Solution for Example 4.12 

Sample Binary Hexa-decimal 

Number Address Address 


0000 0 

2 1000 8 

3 0100 4 

4 1100 C 

5 0010 2 

6 1010 A 

7 0119 6 

8 1110 E 

9 0001 

10 1001 9 

11 0101 5 

12 1101 D 

13 ()Oll 3 

14 1011 B 

15 0111 7 

16 1111 F 

4.6 Address Generation Unit 


The function of the address generation unit is to provide the addresses of the 
operands required. to carry out the DSP operations. Since many instructions, 
such as the mUltiply instruction, require more than one operand for their ex­
ecution, the address generation unit should work fast enough to provide the 
addresses within the time constraints imposed by the instruction execution 
requirements. _ _ 

Further, in a DSP implementation, the address generation unit may be 
required to perform some computation of its own in order to arrive at the 
operand addresses. This is because of the need for the various enhancements 
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to the indirect addressing mode as well as some special addressing modes; 
such as the circular addressing mode and the bit-reversed addressing mode. 
These special f.eatures were discussed in Section 4.5. In order to carry out the 
computations required for the specialized addressing modes the address gen­
eration unit in a DSP implementation is provided with a separate arithmetic 
unit of its own. This way, address computation overhead is removed from the 
main ALU, thereby allowing ino perform more efficiently. 

Address generation typically involves one of the following operations: 

l. 	Getting a new value from an immediate operand, a register, or a mem­
ory location. 

2. 	 Incrementing or decrementing the current address. 

3. 	Adding or subtracting an offset to the current address. 

4. 	Addmg or subtracting ail offset to the current address, comparing the 
new address with the limits defined for a circular addressing mode, and 
generating a new address as per the circular addressing mode algorithm. 

5. 	 Generating a new address from the current address by applying the bit­
reversed addressing mode algorithm. 

The hardware necessary to carry out the various operations listed above 
may consist of the following: an ALU; registers to store the current value, the 
offset, and the new value; registers to store the limits of the circular buffer; 
logic to implement the circular addressing mode; and the logic to implement 
the bit-reversed addressing mode. The block diagram of a typical addressing 
unit is shown in Figure 4.11. , 

4.7 Programmability and Program Execution 

A programmable DSP device needs to provide programming capability similar 
to that of a microprocessor. It should be possible to write programs involving 
branching, loops, and subroutines. The branching capability is needed in 
order to alter conditionally or unconditionally the normal execution sequence. 
The looping operation. is desirable in order to repeat a'section of the program 
the desired number of times. The subroutine handling instructions provide 
the capability to develop'structured software. 

The imple~entation of repeat capability should be hardware based so that 
it can be programmed with minimal or zero overhead. For instance, a counter 
is needed to keep track of the number of times the execution of a block of 
iDstructions remains to be repeated. A dedicated register for this purpose can 
enhance the performance. Repeat is an operation that is needed in the imple­
mentation of many PSP algorithms, and hence its hardware implementation 
has a direct bearing on the overall performance of aDSP scheme. 
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Circular Buffer 
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Offset 
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Add/Sub 

Next Address .Reg 

Next Address 

Figure 4~11 Block diagram of an address generation unit 

The subroutine implementation requires saving the return address in the 
stack. ln a general-purpose microprocessor, a part of the m~ory is used to 
implement the stack. This means that to save the return address as well as 
to restore it on return, the processor requires to carry out memory read and 
write operations using the system data bus. These operations add to the 
overhead and make the overall program execution slow, thereby lowering the 
performance. For a DSP device, it is desirable that a last-in-fitst-out (LIFO) 

. buffer directly interfaces to the program counter (instruction pointer) to save 
the re~rn address. This approach avoids th~ use of the system bus for ac­
cessing the stack and thus speeds up the subroutine. branching as well as its 
retUrn. . 
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4.7.1 Program Control 

Like microproces$ors, a DSP requires a control unit, which provides the nec­
essary control and timing signals for proper execution of instructions. In 
microprocessors, the control unit is generally implemented by means. of a 
microcoded sequencer. Each instruction of the microprocessor is broken 
down into several microinstructions and stored in a microstore as a micro­
code. Whenever one of the instructions is to be executed, the corresponding 
microcode is called from the mi!::rostore and executed, in a manner very sim­
ilar to the execution of subroutines in a program. This type of control unit is 
easy to design and implement and uses less hardware. However, it is not very 
fast since execution of each instruction requires several accesses to the mi­
crostore. For a DSP, on the other hand, the speed of execution of instructions 
is a critical issue. For this reason the design of various building blocks is 
optimized for speed. In a DSP, the microcoded control unit is replaced by a 
hardwired design. In a hardwired design, the control unit is designed as a 
single, comprehensive, hardware unit taking into account the complete in­
struction set of the DSP. Although the hardware complexity is high and the 
design· is not easy to change to incorporate additional features, this works 
much faster compared to the microcoded design and reduces the overhead for 
the instruction execution time. 

4.7.2 Program Sequencer 

The program sequencer, which is a part of the control unit, generates instruc­
tion addresses in the sequence needed to access instructions. Normally, in­
structions are executed in the. orde.r in which they are stored in the memory. 
However, there are several exceptions to this normal flow. Examples are sub­
routines, loops, and branching. The program sequencer hardware computes 

. the instruction address under various conditions. 
After fetching each instruction from the program memory, the sequencer 

generates the address from which the. next instruction is to be fetched. The 
next address is from one of the following sources: 

1. 	The program counter, which is incremented after each instruction fetch. 

2. 	The· instruction register, which holds the address of the instruction in 
·branching, looping, and· subroutine calls. 

3. 	The interrupt vector table, in the case of interrupt service routines. 

4. 	The stack, which holds the return addresses in the case of return from 
subroutines, return from interrupt service routines, and end of loops. 

Figure 4.12 shows the block diagram ·of a program sequencer. The program 
sequencer, in effect, acts as a multiplexer, which selects the address ofthe next 
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Stack 
IRET ------II>­

AddressInterrupt 
Interrupt Vector- Table 

AddressJMP ,------II>­
Instruction ' 

CALL ------II>­

PC IAddress 
~Increment~I 

" 

Multiplexer 

, 

Next Address 

Figure 4.12 A conceptual diagram of a program sequencer 

instruction to be obtained from one of the sources listed above. In order to 
carry out this task, several hardware ,features are incorporated in the program 
sequencer. The program counter has to be updated after every fetch. Circuitry 
is provided for this purpose. Counters are provided to hold the counts in the 
case of loop and repeat instructions. Stacks push: the return addresses for 
subroutines and interrupt service routines and while executing loops and re­
peat instructions. The program sequencer also requires a logic block to test 
conditions under which jump and loop instructions are executed as well as to 
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determine when· to terminate loop and repeat instructions. This logic, called 
the condition logic, tests variQusarithmetic conditions by means of staWs flags 
to decide if conditional jump and loop instructio.n& are to be executed: This 
logic also monitors repeat and loop counters to determine when these have to 
be terminated to return to the normal program flow. 

4.8 Speed Issues 

Fast execution of algorithms is an essential requirement of Ii digital signal­
processing architecture. In order to meet this requirement, DSP architecture 
must include features that facilitate high speed of operation and large through­
puts. Many of these features are possible due to advances in VLSI technology 
arid design innovations. In this section, we will discuss some of these features 

. and see how they can increase the eXecution speed of the DSP architecture. 
We shall 'also discuss certain trade-offs between speed and performance in 
relation to some of these features. 

4:8.1 Hardware Architecture 

Functions such as multiplication, scaling, loops . and repeats, and special 
addressing modes are essential for signal-processing algorithms. The archi­
tectures designed 'tor the signal-processing applications should implement 
these functions in the quickest possible time. This is achieved by hardware 
units, which are specially designed to implement these functions. For example, 
conventional microprocessors implement' the multiplication by means of a 
microprogram (microcode) using the well-known shift and add algorithm. 
This approach takes a large number of clock cycles to implement. In order 
to increase the speed of the operations considerably, parallel multipliers have 
been used to carry out the entire multiplication in a single clock cycle. Thanks 

. to breakthroughs. in VLSI technology, this is possible today. Similar hardware 
. solutions have also been found to implement the other functions mentioned 

eatlier to reduce overheads and to increase the speed. Such methods typically 
replace the slow microprogrammed solutions used in conventional micro­
processors. 

Harvard architecture, which separates the ptogramand data memories with 
separate buses for each, increases the speed of execution of programs consid~ 
erably. Dual data memories with individual buses for each help in accessing 
dual operands simultaneously: 

Multiple external memories require multiple buses external to the DSP. In 
addition to being expensive, external buses are slow for program access and 
execution. By providing oncchip memories and an instruction cache,program 
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execution is speeded up considerably. Further, these on-chip memories can 
also be accessed twice in a clock cycle, thereby reducing the number of sepa­
rate memories and buses required in a device. 

In addition to the hardware issues mentioried earlier, there are many tech­
niques used in nsp architectures tei increase their spee4 of operation. We shall 
consider two of these techniques: parallelism and pipelining. 

4.8.2 Parallelism 

A very major requirement to achieve high speed of operation fu DSP archi­
tecture is the provision of parallelism. Parallelism may mean. several things. 
One is the provision of functional urrits, which may operate in parallel and 
increase the throughput. For example, instead of the same arithmetic unit 
being used to do computations on data and address, a separate address arith­
metic unit can be pz:ovided to take care of address computations. This frees 
up the main arithmetic unit to concentrate on data computations alone and 
thereby increases the throughput. Another example, whichw.as discussed ear:­
lier; is the provision of multiple memories and multiple buses. to fetch an 
instruction and operands simultaneously. In short, there are many functional 
blocks 6perating simultaneously for each of the most commonly used DSP 
operations, , such as add, multiply, shift, etc. This way, algorithms can perform 
more than one operation at the'same time, such as adding while carrying out a 
multiply, shifting:while reading data, from memory, etc. . 

Availability of multiple functional units can increase the speed of the DSP 
architectures. They should be exploited to their full potential by structuring 
the instructions to carry out the required operations in parallel. This requires 
complex hardware to control these units, and the cqntroller is hardwired 
rather .than microprogrammed in order to ensure high speed. The architecture 
should be such that instructions and data required for a computation are 
fetched from the memory simultaneously. 

An ideal parallelism in the DSP architecture with regard to ihe multiply 
and acclUllulate operation, which is the most used operation in DSP im­
plementations, should be able to accomplish the following operations in a 
single clock cycle: 

• 	 Fetch instructions and multiple data required for the computation 

• 	 Shift data as they are fetched in order to accomplish scaling 

• 	 Carry out a multiplication operation on the fetched data 

• 	 Add the product to the previously computed result in the accumulator 

• 	 Save the accumulator contents in the memory storage, if required, and 

• 	 Compute new addresses for' the instruction and data required for the ' 
next operation 

http:whichw.as
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4.8.3 Pipelining 

An architectural feature to increase the speed of the DSP algorithm is pipe­
lining. In a pipelined architecture, an instruction to be executed is 'broken into 
a number of steps. A separate unit of the architecture performs each of these 
steps. When the first of these units performs the first step on the current in­
struction, the second unit will be performing the second step on the previous 
instruction, the third unit will be performing the third step on the instruction 
prior to that, etc. If p steps were required to complete the execution of each 
instruction, it would take p units of time for the complete execution of each 
instruction. However, since all the units will work all the time, one output will 
flow out of the architecture at the end of each time unit, and the throughput 
can be maintained as one instruction per unit time. A problem with this 
approach is dividing each instruction into steps taking equal amounts of time 
trr perform and designing the architectural units accordingly. In practice, 
however, this may not be entirely possible and the slowest unit decides the 
throughput. A second problem is the extra time required at the start of algo­
rithm execution, as the pipeline has to be filled before the result of the first 
instruction can start to flow out. This initial delay in units of time, called the 
pipeline latency, is related to the number of units in the pipeline. Likewise, 
when there is a change in the instruction sequence, as in the case of a branch 
or a loop, the pipeline needs to be c1e,aredbefore the steps of the new instruc­
tion can be loaded into the pipeline, thereby causing a delay. This condition 
can, however, be avoided, at the cost of additional hardware to anticipate the 
branch instruction ahead of time and not filling, the pipeline beyond the 
branch instruction. As an example, let us assume that the execution of an in­
struction can be broken into five steps: instruction fetch, instruction decode, 
operand fetch, execute, and save the result. Figure 4.13 shows how a pipelined 

Time Slot Step 1 Step 2 Step 3 Step 4 Step 5 Result 

to . Insf1 

t1 Inst 2 Inst 1 

t2 Inst 3 Inst 2 Inst 1 

t3 Inst4 Inst 3 Inst 2 Inst 1 

. t4 Inst 5 Inst 4 Inst 3 Inst 2 Inst 1 Inst 1 complete 

ts Inst 6 Inst 5 Inst 4 Inst 3 Inst 2 Inst 2 complete 

• • • • • • • 

Figure 4.13 Pipelining for speeding up the execution of an instruction 
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processor will handle this. For the sake of simplidtywe will assume that all 
the steps take equal amounts of time. 

As we can· see from the figure, the output corresponding to the first in­
struction is available after 5 units of time. However, once the resUlt starts to 
come out, we get an output after each unit of time. In other words, the steady­
state throughput of the system is one instruction per unit time. 

4.8.4 System Level Paralielisman,dPipelining 

The panillelism and·pipelining concepts explained in the last two subsections 
can be extended to the implementation .of DSP . algorithms. Consider the ex-. 
ample of an 8-tap (8 coefficic:nts) FIR ,filter given by 

1 

y(n) L h(i)x(n - i) (4.9) 
1=0 

The filter can be implemented in many ways depending on the number of 
multipliers and· accumUlators available~ Let us look a1 some of these im­
plementations. 

Implementation Using a Single MAC Unit 

If only one multiplier and accumulator· is available, it must be used 8 times to . 
compute the eight product terms in Eq. 4.9 and find thdr sum. Figure 4.14(a) 
shows such an implementation. Each input sample is delayed from the previ­
ous sample by 8T, where T is the time taken by the multiplier and accumula­
tor to compute one product term and add it to the previC!usly accumulated 
sum in the accumulator. Input samples and the filter coefficients are fed to the 
multiplier through multiplexers, which are controlled such that the correct 
combination of a sample and the corresponding filter coefficient are fed to th_e 
multiplier at a given time. As each product term is generated, it is added to 
the previously accumulated sum in the MAC unit After·alI the eight product 
terms are accumulated, the MAC contents are available as the output. Output 
y(n) is available 8T units of time after x(n) is made available to the filter. 
At this time, a new sample x(n + 1) is applied to the filter. The filter then 
uses eight samples, namely, x(n+ 1), x(n), x(n 1), ... , x('n - 6) to compute 
y(n + 1) after another 8T units of time. Thus, this implementation can take in 

. a fresh input sample once every 8 T units of time and generate an output 
sample at thesarne rate. In other words, the maximum sampling rate that 
this filter implementation can handle is lI8T. 



x(n) 

Multiplexer 

1------,---.... y(n) 

Multiplexer 

h(O) h(l) h(2)h(3)h(4)h(5)hl6) 1J.(7) 

(a) 

Figure 4.14(a) . Single MAC implementation of an 8-tap FIR filter 

MAC 
(b) 

. Figure 4.14(b) Pipelinedimplementation of an 8-tap FIR filter using eight MACs 
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h(O}. h(l) h(2) h(3) 

Multiplexer.. 

Multiplexer 

Multiplexer 

Multiplexer 

. h(7) h(6) h(5) h(4) 

(e) 

I---..~y(n) 

Figure 4.14(c) Parallel implementation of an 8-tapFIR filter using two MAC units 
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Pipelined Implementation Using Eight Multipliers and Eight 
Accumulators 

The implementation of the FIR filter of Eq. 4.9 can be speeded up if more 
multipliers and accumulators are available. Let us assume that there are eight. 
multipliers and eight accumulators connected in a pipelined structure, as 
shown in Figure 4.14(b). Each multiplier computes one product term and 
passes it on to the corresponding accumulator, which in turn adds it to the 
summation passed on from the previous accumulator. Since all the multipliers 
and accumulators work all the time, a new output sample is generated once 
every T units of time. This is the time required by the multiplier and accu­
mulator to compute one product term and add it to the sum passed on from 
the previous stage of the pipeline;This implementation can take in a new in­
put sample once every T units of time and generate an output sample at the 
same rate. In other words, this filter implementation works S times faster than 

. the simple one MAC implementation. 

Parallel Implementation Using Two MAC Units 

A third implementation of the FIR filter of Eq. 4.9 is shown in Figure 4.14(c). 
This implementation uses two MAC units and an adder at the output. Each 
MAC computes four of the eight product terms in Eq. 4.9. Input samples and 
the filter coefficients are fed to the MAGs using multiplexers that are con­
trolled such that correct combinations of samples and the corresponding filter 
cqefficients are fed to the two MACs at any given time. If T tin1e units are 
required to compute one pair of products and add them to the previously 
accumulated sum in the MAC units, it will require 4T units of time to generate 
the final output by adding the outputs of the two MACs. At this time, a new 
input sample can be applied to the filter for computation o( the next out­
put sample: The speed of thi~ implementation is 2 times that of one MAC· 
implementation of Figure 4.14(a) and one fourth of that of the pipelined eight­
multiplier. eight-accumulator implementation of Figure 4.l4(b). The maxi~ 
mum rate at which input samples can be applied to this filter implementation 
is 2 times that of the first implementation and one fourth that of the second. 

Table 4.6 Performance Summary of Different Implementations of an 8 -tap FIR Filter 

Type of Maximum 
Implementation Sample Rilte Maximum Throughput 

One MAC lI8T One sample in· 8T units of time 

Pipelined (8 Multipliers liT One sample in T units of time 
and 8 Adders) . 

Two MAC 1I4T One sample in 4T units of time 

T MAC time 
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Table 4.6 summarizes the performance of the three implementations de~ 
scribed above. The example shows that it is possible to achieve higher-speed 
implementation by the use of parallelism andlor pipelining. This, however, 
incteases the hardware complexity. 

4.9 Features for External Interfacing 

It is important for a DSP device to be able to communicate with the outside 
world. The outside world provides the signal to be processed and receives the 
processed signal. Therefore, most of the peripherals used with conventional 
microprocessors are also needed in a DSP system. These peripherals include 
interfaces for interrupts, direct memory access, serial I/O, and parallel I/O. In 
addition, since DSP is a digital device that is expected to process analog sig­
nals, conversions from analog-to-digital and digital-to-analog representations 
need to be carried out outside the device. From signal interfacing viewpoint, a 
DSP device should be capable of handling commonly available serial and par­
allel signal converters. All these features require the availability of appropriate 
address, data, and control signals to set up interfaces with the peripherals. The 
inclusion of a timer in the architecture is also very desirable to implement 
events at regular intervals, such as periodically initiating an AID converter to 
start the conversion. A timer should be able to interrupt the processor to get 
its attention when needed so that the data acquisition can go on in the back­
ground simultaneously with the execution of the signal-processing program. 

4. 1 0 Summary 

In this chapter, architectural features of programmable DSP devices have been 
examined based on the most frequently used DSP operations. Computational 
building blocks and other functional units have been described along with 
examples of i11;lplementations. Bus architecture and memory organization are 
explained to show how they help in realizing fast implementations of DSP 
algorithms. Trade-off' between complexity and speed has also been discussed 
to show how the architectural features of programmable DSP devices can be 
optimized fot efficient implementations. , 

In summary, the following is a list of architectural features of a program­
mable DSP device that should be evaluated before implementing an algorithm: 

• 	 Data representation format: fixed-point, floating-point formats and data 
word length for accuracy and dynamic range. 

• 	 Computational capability: an ALU with. a hardware multiplier and 
shifters for scaling. 
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• 	 Harvard architecture: provision of separate D;lemories for program arid 
data to fetch instructions and data simultaneously. . 

• 	 On-chip memories: provision of on-chip program and data memories to 
avoid bus contention and to speed up program execution. 

• 	 Addressing modes: data addressing capabilities including indirect, in­
dexed, circular buffer, and bit-reversed addressing modes. 

• 	 Programmability: programming capabilities including subroutines, 
branching, loops and repeats. 

• 	 Hardwired control: fast implementation of sequencing and control for 
single-cycle instruction execution. 

• 	 Parallelism: multiple functional units for parallel implementation of 
different functions such as simultaneous execution of an arithmetic 
operation and an address computation. 

• 	 Pipelining: simultaneous operation of different stages of an instruction 
execution by splitting it into steps handled by individually designed 
units. 

• 	 Interfacing: provision to interface serial devices such as AID and D/ A 
converters; parallel I/O, interrupt, and direct memory access. 
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Assignments 

4.1 	 What distinguishes a digit'al signal processor from a general-purpose micro­
processor with regard to basic capabilities? 

4.2 	 Specify the basic architecture required to implement the following operations 
so that they ~an be executed in the least possible time: 

a. 	 (Xl + jYl)(X2 + jY2) 

b. 	(0.5Xl + 4x2)/256 

4.3 	 Draw a structure similar to that of Figure 4.1(b) for an 8 x 8 unsigned binary 
multiplier. 

4.4 	 How will you implement an 8 x 8 multiplier using 4 x 4 multipliers as the 
building blocks? 

4.5 	 Suggest a scheme to implement a multiplier to multiply two complex numbers 
using the multiplier shown in Figure 4.1(b) as the building block. 

4.6 	 Draw a structure based on Eq. 4.7 to' multiply two 4-bit signed numbers, A 
and B. 

4.7 	 a. Assuming the availability of a single 16-bit data bus, how many memory . 
accesses will be required to access two 16-bit operands from the mem­
ory, multiply them, and save the 32-bit product back in the memory! 

b. Suggest. a 	suitable hardware scheme to implement the multiplication 
specified in part (a). 

4.8 	. Figure 4.3(b) shows the structure of a 4-bit barrel shifter. The switches shown 
connect each input bit ~o one ofthe output lines, depending on the number of 
bits to be shifted. Suggest a suitable hardware scheme for the switches and 
redraw Figure 4.3(b) by replacing the switches with its hardware. Also show 
how the control inputs control the switches to achieve the desired shift. 

4.9 	 What should be the minimum width of the accumulator in a DSP device that 
receives lO-bit AID samples and is required to add 64 of them without causing 
an overflow? 

4.10 	 a. What is meant by -overflow in an arithmetic computation? How is an 
overflow condition detected in an ALU? 

b. 	By means of numerical examples using 8-bit, 2's complement numbers, 
illustrate the conditions of (i) no overflow, (ii)' overflow, (iii) no under­
flow, and (iv) underflow resulting from arithmetic operations in an ALV. 
In each case; verify if the circuit of Figure 4.6 can detect the condition. 
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4.11 	 Suggest the memory architecture reqUired for a DSP device to implement each 
of the following algorithms: 

a. N-tap FIR filter 
b. 2M_point FFT 

c. autocorrelation of a segment ofN samples 

d. crosscorrelation of two sequenc~s of N samples each. 

4.12 	 Figure 4.8(c) allows for an instruction and two operands to be fetched simul­
taneou$ly from the memory to. the DSP to execute a multiply instruction in a 
single cycle. However, to save the result in memory, one mere memory access 
is required. Can you specify an architecture that allows the result to be written 

. back to the memory in the same cycle?' . 
. . 

4.13 	 Identify the addressing modes of the opermds in each of the following in­
structions (AR stands for address register): . 

ADD#1234h 

. ADD 1234h. 

ADD*AR+ 


. ADD offsetaddr-,*AR 


4.14 	 What is the bit-reversed sequence of32 samples Xu, Xl> X2, ••• , X31 as obtained 
by sampling a signal? . . 

4.15 	 Table 4.4 shows how bit reversing is done for 8 points. A similar algorithm 
can be used for any 2n pomtS. Specify using a block diagram how it can be 
implemented in hardware. 

4.16 	 How will you organize samplis and Iilter coefficients using a circular buffer 
addressing scheme to implement a 32 'l.p FIR filter given by 

31 

y(n) = 2.: bkx(n - k) 
k=O 

4.17 	 When a two-dimensional array of data such as a matrix is organized in a 
memory with linear (or one-dimensional) addressing, it is usually arranged in 

. a row-ordered format. That is, all the elements of the first row are placed first 
in successive memory locations, starting with the very first location. This is 
followed by the elements of the second row, and so on,' until all the elements 
of all the rows are arranged. Wri~e a pseudocode to compute the address of 
any given element of this matrix, say, the element (i, j), assuming that there 
are N rows and M columns in the matrix. . 

4; 18 	 Suggest a hardware architecture for the addressing unit that computes the 
two-dimensional address described in Problem 4.17 without the overhead re­
quired for computing it in software. 

4.19 	 Given below is the pseudocode of a software lOOp normally used in a general­
. purpose microprocessor for repetitive execution of an arithmetic operation. 
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Modify the code for a DSP with zero-overhead looping hardware: 

Load count register 

Back: 	 Get operands; Compute; Update pointers 

Decrement Count 

If Count is not zero then jump Back 

Proceed 

14.20 	 Explain the difference between a single-instruction, zero-overhead hardware 
looping and multiple-instruction, zero-overhead hardware looping in terms of 
architectural requ4'ements and the performance. . . 

4.21 	 What is the difference between a microcoded program control and a hard­
wired program control? Why is the latter preferred for DSP implementations? 

4.22 	 List the major architecturat features used in a digital signal processor to 
achieve high speed of program execution. 

4.23 	 What architectural features are required in a DSP device to implement an FIR 
filter with N taps so that a steady-state throughput of one output sample per 
cycle is achieved? 

4.24 	 List the essential peripherals required to implement the fonowing DSP sys­
tems: 

A speech processing system 

A biomedical instrumentation system 

An image processing system 
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Figure 5.4 Functional architecture for TMS320C54xx processors 

(CoultesYQf Texaslns~ruments). 
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Figure 5.5 Functional diagram of the central processing unit of the TMS320C54xx processors 

(CourteSy of Texas Instruments Inc.) 

barrel shifter; a 11.x 11",bit multiplier; a 40-bit adder; a compare, select and 
store unit (CSSU); an exponent encoder (EXP); a data address generation unit 
(DAGEN); and a program address generation unit (PAGEN). 

The ALU performs· 2's complement arithmetic operations and· bit-level 
Boolean operations on 16-, 32-, and 4O-bit words. It can also function as two 
separate 16-bit ALUs and perform two 16-bit operations simultaneously. Fig­
ure 5.5 shoWs the functional diagram of the ALU of the TMS320C54:xx family 
of devices. 

Accumulators A and B store the output from the ALU or the multiplierl . 
adder block. and provide a second input to the ALU. Each accumulator is 
c:Uvided: into three parts: guard bits (bits 39-32), high-order word (bits 31­
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Figure 5.6 Functional dia~ram of the barrel shifter of the TMS320C54xx processors 

.(Courtesy of Texas Instruments inc.) 

16), and low-order word (bits 15-0), which can be stored and retrieved indi­
. vidually. 

The barrel shifter provides the capability to scale the data during an oper­
and read.or write.NooverJt<!ad is required to implement the shift needed for 
the scaling operations. The '54xxbarrel shifter can produce a left shift of 0 to 
31 bits or a right shift of 0 to 16 bits on the input data. The shift requirements 
are defined in the shift.count field of the instruction, the shift. count field of 
status register ST!, or in the temporary register T. Figure 5.6 shows the func­
tional diagram of the' barrel shifter of TMS320C54xx processors. 

The barrel shifter and the exponent encoder normalize the values in an . 
accumulator in a single cycle. The LSBs of the output are filled with Os, and·· 
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Figure 5.7 Functional diagram of the multiplier/adder unit of TMS320C54xx processors 

(Courtesy of Texas Instruments Inc.). 

, the MSSs can be either zero filled or sign extended, depending on the state of 
the sign-extension made bit in the status register STl. Additional shift capa­
bilities enable the processor to perform numerical scaling, bit extraction, ex~ 
tended arithmetic, arid overfiow prevention operations. 

The kernel of the DSP device architecture is its multiplier/adder unit. 
The multiplierladder unit of TMS320C54xx devices performs 17 X 11 2's­
complement multiplication with a 4O-bitaddition effectively in a single instruc­
tion cycle. In addition to the multiplier and adder, the unit consists of control 
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logic for integer and fractional c~mputations and a 16-bit temporary storage 
register, T. Figure 5.7 shows the functional diagram of the multiplier/adder 
unit of TMS320C54xx processors~ 

The compare, select, and store unit (CSSU) is a hardware unit specifically 
incorporated to accelerate the add/compare/select operation. This operation is 
essential to implement the Viterbi algorithm used in many signal-processing 
applications. . . 

The 'eXponent encoder unit supports the EXP instruction, which stores in 
the T register the number of leading redundant bits of the accumulator con­
tent. This information is useful while shifting the accumulator content for the 
. purpose of scaling~ , . 

5.3.3 Internal Memory and Memory-Mapped Registers 

The amount and the types of memory of a processor have direct relevance 
to the efficiency and the performance. obtainable hi implementations with the 
processor. The '54xx memory is organized into three individually selectable 
spaces: program, data, and I/O spac~s. All '54xx devices contain both RAM 
and ROM. RAM can be either dual-access type (DARAM) or single-access type 
(SARAM). The on-chip RAM for these processors is organized in pages having 
128 word locations on each page. . 

The '54xx processors have a number of CPU registers to support operand 
addressing and computations. The CPU registers and peripheral registers are 
all located on page 0 of the data meplory. Figures 5.8(a) and (b) show the in­
ternal CPU registers and peripheral registers with their addresses. Figure 5.8(c) 
shows the processor mode status (PMST) register that is used to configure the 
processor. It is a memory-mapped register loc~ted at address lOh on page 0 of 
the RAM; The peripheral registers are covered in subsequent chapters. 

A part of on-chip ROM may contain a bootloader and look-up tables for 
functions such as sine, cosine, Jl-law, and A-law. Details of the memory space 
of TMS320C54xx processors are discussed in Section 55. 

5.4 	Data Addressing Modes of TMS320C54xx 
Processors 

Data addressing modes provide various ways to access operands to execute 
instructions and place. results in the memory or the registers. The '54xx devices 
offer seven basic addressing modes: immediate addressing, absolute address­
ing, accumulator addressing, direct addressing, indirect addressing, memory­
mapped register addressing, and' stack addressing. 



118 Chapter 5 Programmable Digital Signal Processors 

ADDRESS 

NAME' DEC HEX DESCRIPTION 

IMR 	 0 0 Interrupt mask register 
IFR 1 1 Interrupt flag register 

2-5 2-5 Reserved for testing 
STO 6 6 Status register 0 
sn 7 7 Status register 1 
AL 8 8 Accumulator A low word (15"-0) 
AH 9 9 Accumulator A high word (31-16) 
AG 10 A Aq:umulator A guard bits (39-32) 
BL 11 B Accumulator B low word (15-0) 
BH 12 C AccumulatorB bigh word'(31 ~16) 
BG 13 D Accumulator B guar~ (39-32) 
TREG 14 E Temporary regist~r 
TRN 15 F . Transition register 
ARO 16 10 Auxiliary register 0 
AR1 17 11 Auxiliary register 1 
AR2 18 12 Auxiliary register 2 
AR3 19 13 Auxiliary register 3 
AR4 20 14 Auxiiiary register 4 
AR5 21 15 AuxiUary register 5 
AR6 22 16 Auxiliary register 6 
ARt 23 17 Auxiliary register 7 
SP 24 18 Stack pointer register 
BK 25 19 . Circular buffer size register 
BRC 26 1A Block repeat counter 
RSA 27 1B Block repeat start address' 
REA 28 1C Block repeat end address 
PMST 29 10 Processor mode status (PMST) register 
XPC 30 1E Extended program page register 

31 1F Reserved 

(a) 

Figure 5.8(a) 	 InternaLmemory-mapped registers of TMS320C54xx signal processors 

(Courtesy of Texas Instruments Inc.) 

5.4,1 Immediate Address1ng 

.In this mode, the instruction contains the specific value ofthe operand. The 
. operand can be short (3, 5, 8, or 9 bits in length) or long (16 bits in length), 

The instruction syntax for short operands. occupies one memory location, 
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ADDRESS 

NAME DEC HEX DESCRIPTION 

DRR20 32 20 McBSP 0 Data Receive Register 2 
DRR10 33 21 McBSP 0 Data Receive Register 1 
DXR20 34 22 McBSP 0 Data Transmit Register 2 

DXR10. 35 23 McBSP 0 Data Transmit Register 1 

TIM 36 24 Timer Register 

PRD 37 25 Timer Period Register 

TCR 38 26 Timer Control Register 

3.9 27 Reserved 

SWWSR 40 28 Software Watt-State Register 

BSCR 41 29 Bank-Switching Control Register 

42 2A Reserved 

SWCR 43 2B Software Watt-StateContr¢ Register 

HPIC 44 2C HPI Control Register (H~ODE = C} only) . 

45-47 2D-2F Res~rved . 
DRR22 48 30 McBSP 2 Data Receive Register 2 

DRR12 49 31 McBSP 2 Data Receive Register 1 

DXR22 50 32 McBSP 2 Data Transmit Register 2 

DXR12 51 33 McBSP 2 Data Transmit Register 1 

SPSA2 52 34 McBSP 2 Subbank Address Register 

SPSD2 53 35 McBSP 2 Subbank Data Register 

54-55 36-37 Reserved 

SPSAO 56 38 McBSP 0 Subbank Address Register 

SPSDO 57 39 McBSP 0 Subbank Data Register 

58-59 3A-3B Reserved 

GPIOCR 60 3C General"Purpose 1/0 Control Register 

GPIOSR 61 3D General-Purpose I/O Status Register 

CSIDR 62 3E Device ID Register 

63 3F Reserved 

DRR21. 64 40 McBSP 1 Data Receive Register 2 

DRR11 65 41 . McBSP 1 Data Receive Register 1 

DXR21 66 42 McBSP 1 Data Transmit Register 2 

DXR11 67 43 McBSP 1 Data Transmit Register 1 

68-71 447"47 Reserved 

SPSA1 72 48 McBSP 1 Subbank Address Register 

SPSDl 73 49 McBSP 1 Subbank Data Register 

74-83 4A-53 Reserved 

DMpREC 84 54 DMA Priority and Enable Control Register 

DMSA 85 55 DMA Subbank Address Register 

FigureS.8{b) Peripheral registers for the TMS320C5416 processor 
(contin:Jed)(Courtesy of Texas Instruments Inc.) 
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DMSDI 86 56 DMA Subbank Data Register with Autoincrementt 

DMSON· 87 57 ·DMA Subbank Data Register 
CLKMD 88 58 Clock Mode Register (CLKMD) (. 

89-95 59-5F Reserved 

(b) 

Figure S.8(b) Continued 

15-7 '6 5 4 3 2 o 
IPTR 

tThese bits are only supported on C54x devices with revision A or 

(c) 

Figure S.8(c) Processor mode status (PMSn register ofTMS320C54xxprocessors 

(Courtesy of Texas Instruments Inc.) , 

whereas that for long operands occupies two ,memory locations. This address­
ing mode can be used to initialize registers and memory locations. Examples 
of instructions using this addressing mode are 

LO #20, DP This accomplishes #20 ~ DP 
RPT #OFFFFh This accomplishes #FFFFh ~ RC 

5.4.2· Absolute Addressing 

In this mode, the instruction contains a specific address. The ~pecified address 
may be for a data memory location (dmad addressing), a program memory 
location (pmad addressing), a port address (PA addressing), or a location in 
the data space specified directly (*(lk) addressing). Examples of instructions 
using. this ,mode of addressing are 

*AR5 1000h ~ AR5 addressi 

MVPO IOOOh, *AR7 1000h ~ *AR7 (pmad addressi 

PORTR 05h, *AR3 05h ~*AR3 (PA addressing) 

LD *(lOOOh). A *(IOOOh) ~ A (*(lk) addressing) 


5.4.3 Accumulator Addressing 

This mode uses the accumulator contents as the address and is used to move 
data between a program memory location and a data memory location. Ex­
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amples of iQstructions in this mode ~e READA andWRITA. READA trans­
fers'a. word from a program-memory location specified by accumulator A to.a 
data-memory location. WRITA transfers a word from a data-memory location 
to a program-memory location specified by accumulator A. 

. Here is an example:. 

RfADA *'AR2 ; This accomplishes *A -ii- *AR2 

5.4.4 DirectAddressing 

In the direct addressing mQde. the 16-bit address of the' data-memory location 
is formed by combining the lower 7 bits of the data-memory address con­
tained in the instruction with a base address given by the data-page pointer 
(DP) or the stack pointer (SP). Figure 5.9 shows the operation of the direct 
addressing mode of TMS320C54xx processors. . 

Using this form of addressing, one can access a page of 128 contiguous 
locations without changing the DP or theSP. The compiler mode bit (CPL), 
located in the! status register ST1, is used to select between the two pointers 

DP(9) 

CPLI CPL 
DAGEN 

DatabUsDB(16) 

Data bus EB(l6) 

o EA =DP: offset(IR) 
1 EA""SP+offset(IR) 

7 LSBs from IR (dma) 

DAB(16) (read) 

EAB(16) (write) 
or 

CAB(16) 
(32-bit read) 

Legend: EA Effective address 
IR Instruction register 

Figure 5.9 Block diagram of the direct addressing mode for TMS320C54xx processors 

(Courtesy of Texas Instruments inc.), 
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used to generate the address. CPL 0 selectsDP and CPL = 1 selects SP. For 
example, when CPL 0,· to add the contents of the memory location 0 on 
page 4 in the data memory to accumulator B, we can use the instruction 
sequence: 

LD #4, DP DP = 4 = upper 9 bi ts of address 
ADD=O. B Lower 7 bi ts of the address· 

With this exap1ple the contents of the first locations on data page 4 (memory 
address 0200h) are added to accumulator B. 

It should be remembered that when SP is used instead of DP, the effective 
address is computed by adding the 7-bit offset to SP. 

5.4.S Indirect Addressing 

In indirect addressing, any location in the data space can be accessed by 
means of an address contained in an auxiliary register. The '54xx devices have 
eight 16-bit 'auxiliary registers (ARO-AR7). Indirect addressing is used when 

DAB(16) 
(read) 

EAB(16) 
(write) or 
CAB(16) 
(32-bit read) 

Figure 5.10 Block diagram for the indirect addressing mode of TMS320C54xx processors 

(Courtesy of Texas Instruments Inc,) 
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there is a need to step through a sequence of locations in the memory in fixed­
sized steps. 

Two auxiliary register arithrrietic units (ARAUO and ARAUl) are used to 
modify the contents of the auxiliary registers for the indirect addressing mode. 
They perform unsigned, l6-bit arithmetic operations. The auxiliary registers 
can be loaded with an immediate value, loaded via the data bus, and modified 
by the indirect addressing field of any instruction that supports indirect 
addressing or by the modify auxiliary register (MAR) instruction and used as 
loop counters. 

Figure 5.10 shows how ARAUs are used to generate an address in the indi­
rect addressing mode using a single data-memory operand. An address can be 
modified before or after accessing the location or can be left unchanged. 
Modification can be by incrementing or decrementing the addresli by 1, add­
ing a 16-bit offset, or indexing with the value in ARO. Each of these mod­
ifications may be carried out either before or after accessing the memory 
location. Table 5.2 gives the operand syntax and the correspondin~ ARAU 
operations for the single operand indirect addressing mode. 

I> Example 5.1 Assuming the current contents of AR3 to be 200h, what will be its contents 
after each of the following TMS320C54xx addressing modes is used? Assume 
that the contents of ARO are 20b. 

a. *AR3 + 0 

b. *AR3-0 

c. *AR3+ 

d. *AR3­

e. *AR3 

f. *+A:R3(40h) 

g. *+AR3(-40h) 

Solution a. AR3 +- AR3 + ARO; 
AR3 = ~OOh + 20h = 220h. 

b. AR3 +- AR3 ­ ARO; 
AR3 200h - 20h = lEOh. 

c. AR3 +- AR3 + 1; 
AR3 = 200h + 1 = 20lh.· 

d. AR3 +- AR3 ­
AR3 = 200h ­

I; 
1 = IFFh. 

e. AR3 is not modified. 
AR3 = 200. 

f. AR3 +- AR3 + 40h; 
AR3 = 200h + 40h 240h. 

g. AR3 +- AR3 40h; 
AR3 = 200h - 40h = lCOh. 
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Table 5.2 	 Indirect Addressing Options with a Single Data-Memory Operand 

Operand Syntax Operation 

*ARx addr +- ARx 

*ARx+ addr +- ARx 

ARx+- ARx+ 1 

*ARx- addr +- ARx 

ARx+- ARx-l 

*+ARx ARx+- ARx+ 1 

addr +- ARx 

. *ARx+O addr +-"ARx 

ARx +- ARx + ARO 

*ARx 0 addr +- ARx 

ARx +- ARx ARO 

*ARx+OB addr +- ARx 

ARx +- B(ARx + ARO) 

*ARx-OB addr +- ARx 

ARx +- B(ARx - ARO) 

*ARx+% addr +- ARx 

ARx+- circ(ARx + 1) 

*ARx-% addr +- ARx 

ARx +- circ(ARx - 1) 

*ARx+O% addr +- ARx 

ARx +- circ(ARx + ARO) 

*ARO-O% addr +- ARx 

ARx +- circ(ARx - ARO) 

*(lk) addr +-lk 

*ARx(lk) addr +- ARx + lk 

*+ARx(lk) ARx ARx+lk 

addr +- ARx 

*+ARx(lk)% ARx <- circ(ARx + lk) 

addr <- ARx 

Circular Addressin9 

Many fast real-time algorithms, such as convolution,. correlation, and FIR fil­
ters,require the implementation of a circular buffer in memory. A circular 
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buffer is a sliding window containing the most recent data ..As new data come 
in, the buffer overwrites the oldest data. An indirect addressing mode with 
circular address modification allows implementation of circular buffers. 

The circular-buffer size register (BK) specifies the size ofthe circular buffer. 
A circular buffer must start on an N-bit boundary; that is, the N LSBs of the 
base address of the circular buffer must be o. For example, a 31-word circular 
buffer must start at an address whose five LSBs are 0 and the value 30 must be 
loaded into BK. Similarly, a 48-word circular buffer must start· at an address 
whose six LSBs are 0 and the value 47 must be loaded into BK. 

The algorithm for circular addressing works as follows: 

If 0 ~ index + step <BK: index = index + step; 
else if index + step ~ BK: index = index + step - BK; 
else if index + step < 0: index = index + step + BK. 

First I at location N - I 

~ 
15 N N-l o 15 N N-l () 

I H ... H I L ... L I I 0 ... 0 I BL ... BL J 
t 

,. 0 

EOB + 11 H ... H I BL .,. BL J 
15 N N-l r 0 

Index I 0 ... 0 I L ... L I 

15+ N N-l 

•Circular 
addressing 15.t N N-I 0 

algorithm EFBI H ... H I 0 ... o J 
logic 

Base (low address) 

::XI 0 ... 0 1 L' ... •L' I Legend: EFB Effective base address 
H High-order bits I 
L Low-order bits 

15 r N N-l 0 L' New low-order bits 1 , ,_T 'II 1 ~. L'" •New " er 
ARx I H ... H I L' ... L' 

Size register 

(a) 

Figure 5.11(a) Block diagram of the circlilar addressing mode for TMS320C54xx processors 

(Courtesy of Texas Instruments Inc.) 
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Address 

15 N N-l o 
Effective o 01-+bise 

ARK. 

N N-l 0 

-+ 

15 

I H 

N N -1 

H I LSBs BK 

(b) 

0 

I -+ 

Data 


Top of circular buffer 


Element 0 

Element 1 

Element (n LSB 

Last element 


Last element +1 


Figure 5.11{b) Circular addressing mode implementation in TMS320C54xx processors 

(Courtesy of Texas Instruments Inc.) 

Figure 5.11(a) illustrates the relationships between BK) the auxiliary register 
ARx (the pointer), the bottom of the circular buffer, the top or the circular 
'buffer, and the index into the circular buffer. Figure 5.11 (b) shows how the 
circular buffet is implemented and illustrates the relationship between the 
generated values and the elements in the circular buffer. 

I> Example 5.2 	 Assume that the register AR3 with contents 1020h is selected as the pointer 
for the circular buffer. Let BK 40h to specify the circular buffer size as 41h. 
Determine the start and the end ,addresses for the buffer. What will be the 
contents of register AR3 after the execution of the instruction LD -*AR3 + 00/0, 
A, if the contents of register ARO are 002Sh? 

Solution 	 AR3 1020h means that currently it poihts to location 1020h. Making the 
lower 6 bits zeros gives the startaddress of the buffer as HiOOh. .Replacing the 
same bits with the BK gives the end address as 1040h. 

The instruction 

LD *AR3 +0%, A 

modifies AR3 by adding ARO to it and applying the circular modification. It 
yields 

AR3 = circ(1020h + 002Sh) = circ(l04Sh) = 104Sh - 40h = 100sh. 

Thus the location 100sh is the one pointed to by AR3. 
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Bit-Reversed Addressing 

Bit-reversed addressing is used in FFT algorithms. In this addressing mode, 
ARO specifies one half of the size of the FFT. An auxiliary register points to the 
physical location 6f a data value. The address of the next location is generated 
by adding, in a bit-reversed manner, ARO and the other specified auxiliary 
register. In the bit-reversed addition, the carry bit propagates from left to 
right, instead of right to left as in the regular add. 

l> Example 5.3 Assuming the current contents of AR3 to be 200h, what will be its contents 
after each of the following TMS320C54xx addres~ing modes is used? Assume 
that the. contents of ARO are 20h. 

a. *AR3+ OB 

b.*AR3 - OB 

Solution a. AR3 <- AR3 + ARO with reverse carry propagation; 
AR3 = 200h +20h (with reverse carry propagation) = 220h. 

b. AR3 <- AR3- ARO with reverse carry propagation; 
AR3 ~ 200h - 20h (with reverse carry propagation) = 23Fh. 

./ 

Dual-Operand Addressing 

Dual data-memory operand addressing is used for instructions that simulta­
neously perform two reads (32-bit read) or a single read (16-bit read) and a 
parallel store (16-bit store) indicated by two vertical bars, II. These instruc­
tions access operands using indirect addressing mode. 

If in an instruction with a parallel store the source operand and the desti­
nation operand point to the saine location, the source is read before writing to 
the destination. Only 2 bits are available in the instruction code for selecting 
each auxiliary register in this mode. Thus, just fo~r of the auxiliary registers, 
AR2-AR5, can be used, The ARAUs, together with these registers, provide the 
capability to access two operands in a single' cycle. Figure 5.12 shows how an 
address is gene~ated using dual data-memory operand addressing. 

5.4.6 Memory-Mapped Register Addressing 

Memory-mapped register addressing is used to access the memory-mapped 
registers without affecting either the current data-page pointer (DP) value or 
the current stack-pointer (SP) value. This mode works for both ~irect and 
indirect addressing~ Taking only the seven least significant bits of the 16-bit 
direct address or the value of the auxiliary register used for indirect address­
ing, the required address is generated. 

For example, if ARi is used indirectly to point to a memory-mapped reg­
ister using the memory-mapped register addressing mode and its contents are 
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AROBKlk 1 

ARO(l6) index . 

AR2(16) 

AR3(16) 
AR4(16) 
ARS(16) 

BK(16) 

Data bus DB(l6) 

DAB(16) 
(read) 

EAB(16) 
(write) or 
CAB(l6) 
(32-bit read) 

Data bus EB{16) 

Figure5.12 Block diagram of the indirect addressing mode of TMS320C54xx processors 
usi l1g dual memory operands 

(Courtesy of Texas Instr!Jments Inc.) 

3825h, then ARl points to the timer period register (PRD), since the seven 
LSBs of ARl are 25h, which is the address of the PRD register. After execution, . 
ARl contains 0025h. 

Consider the following instruction as another example: 

LDM AR4. A 

In this case the data stored at OOl4h; which is the memory address of AR4, is 
loaded onto A. . < 

5.4.7 Stack Addressing 

The stack is used to store the return address during the servicing of interrupts 
and invoking of subroutines. It can also be used to pass parameters to sub­
routines during program execution. The stack is ·filled from the highest to the. 
lowest memory address and emptied from the lowest to the highest address. 

http:Figure5.12
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A 16-bit stack pointer (SP) is used to address the stack location at a given in~ 
stance. SP points to the last element stored onto the stack. Instructions that 
access the stack for saving and recovering data on the stack consist of PUSHD, 
PUSHM, POPD, and POPM; 

5.5 Memory Space of TMS320C54xx Processors 

TMS320C54xx processors provide for a total of 128K words of memory ex­
tendable up to 8192K words. This includes both program memory and data 
memory. Within this space; RAM (both single access and dual access), ROM, 
EPROM, EEPROM, or memory-mapped peripherals may reside either on- or 
off-chip. The program memory space is used to store program instructions 
and the tables used in the execution of programs. The data-memory space is 
used to store data required to run programs and for external memory-mapped 
peripherals. Figures 5.13(a) and (b) show memory maps for the basic and ex­
tended memories. of the TMS320C5416 processor. 

The size of the data memory is 64K words, part of which is on-chip 
DAl,tiM. The device automatically accesses the on-chip RAM when the ad­
dress is within its· range.· Memory-mapped registers are also part of the data­
memory space. 

The program memory is organized into 128 pages, each of 64K word size. 
Page 0 is part of the basic 128K space, and pages 1 to 127 are extended pages. 
Out of the 64K words on page 0, 4K words are on-chip ROM. The remaining 
space on page 0 as well as the extended space consist ofDARAM and SARAM, 
both on-chip and off-chip, as shown in Figures 5.13(a) and (b)~ The 4K on­
chip ROM space contains a GSM EFR speech codet table, a bootloader, Jl-Iaw 
and A-law expansion tables, a sine look-up table, and an interrupt vector 
table. 

The MP/MC, OVLY, and DROM bits located in the processor mode status 
register (PMST) are used to enable and disable on-chip memories in the pro­

.gram and data spaces. The functions of these bits are described in Table 5.3. 

> Example 5.4' 	 What is the configuration of on-chip DARAM, on-chip SARAM, and ROM if 
MP/MC = 0, OVLY I, and DROM 0 for TMS320C5416? 

Solution a. 	Since MP/MC = 0, 16K on-chip ROM is enabled as program memory at. 
address cOOOh-feffh. 

b. Since miLY = 1, DARAM is mapped on to the program memory space 
at address 0080h-7flTh. Memory at addresses OOOh-007fh is reserved for 
memory-mapped registers and the scratch pad purpose. 

c. Since DROM = 0, ROM is not mapped on to the data memory. 



010000' 020000' 
On-Chip 
.ARAM0--3 

(OVLY=I) 
External 

t---_---11027FFFI(OVLY=0) 

028000 I 0 ChO n- Ip 
SARAM0--3 
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Hex Page 0 Program Hex Page 0 Program Hex 
0000 Reserved 

(OVLY I) 
External 

(OVLY=O) 

On-Chip 
DARAM0--3 
(OVLY= I) 

External 
(OVLY=O} 

External 

Interrupts 
(External) 

00000000 Reserved 
(OVLY=I) 

External 
r-i0VLY=OL 

On-Chip 
DARAM0--3 
(OVLY=I) 

External 
(OVLY=O) 

External 

On-Chip ROM 
(l6KX Iii-bit) 

Reserved 

Interrupts 
(On-Chip) 

005F 

0060 
0080 

007F007F 
·007F 

0080 
0080 

7FFF7FFF 7FFF8000 
BFFF 

8000 
8000 

COOO 
FF7F FEFF 

FFOOFF80 
FF7F 
FF80 

FFFF FFFF 
MPtMC=1 MPIMC=O 

(Microprocessor Mode) (Microcomputer Mode) 

FFFF 

Address ranges for on-chip DARAM in data memory are: 

Hex Program Hex Program Hex Program 
030000' 

On-Chip 
iARAM0--3 

(OVLY=I) 
External 

037FFFI (OVLY =0) 

IIP,(MC=O) 
External 

'!MC=I) 
........__-' 03FFFFI--__.... 


Page I Page 2 l'age 3 Page 4 

XPC I XPC=2 XPC=3 XPC=4 


Address ranges for on-chip DARAM in program memory are: DARAM4: 01800Qh-Q19FFFh; 
. DARAM6: OIDOOOOh-QlDFFFh; 

Address ranges for on chip SARAM in program memory are: SARAMO: 028000h-029FFFh; 
SARAM2: 02CooOh--Q2DFFFh; 
SARAM4: 038000h-Q39FFFh; 
SARAM6: 03COOOh-Q3DFFFh; 

(b) 

Figure 5.13 Memory map for the TMS320C5416 processor 

(Courtesy of Texas Il\struments Inc.) 

DARAMO: 0080h-IFFFh; 
DARAM2: 4OQOh-5FFFh; 
DARAM4: 80ooh-9FFFV; 
DARAM6: COOOh-DFFFh; 

(a) 

Hex Program 

040000= 
bn-Ch. ip 
ARAM0--3 

(OVLY= I) 
External 

04~fFFI~VLY= 0) 

048000 

External 

Data 

Memory-Mapped 
Regist~ 

Scratch-Pad 
RAM 

On-Chip I 

DARAM0--3 
(32K X 16-bit) 

On-Chip 
DARAM4-7 
(DROM=I) 

or 
External 

(DROM=O) 

DARAMI:2000h-3FFFh 
JARAM3: 6000h-7FFFh 
DARAM5:AOooh-BFFFh 
DARAM7: EOOOh-FFFFh 

Hex Program 

7FooOO= 
On-Chip 
ARAM0--3 

(OVLY=I) 
External 

7F7FFF I (OVLY = 0) 

7F8000 

External 

7FFFJ:F L...'__----' 

Page 127 
XPC=7Fh 

DARAM5:0IAOooh-QIBFFFh 
DARAM7:0IEOOOh-QIFFFFh 
SARAMl: 02AOOOh-Q2BFfFh 
SARAM3: 02EooOh-02FFFFh 
SARAM5: 03AOOOh-o.3BFFFh 
SARAM7: 03EOooh-Q3FFFFh 



5.6 Program Control 131 

Table S.3 Processor Bits for Configuring the On-Chip Memories 

PMST Bit Logic On-chip Memory Configuration 

MP/MC 0 ROM enabled 

ROM not available 

OVLY 0 RAM in data space 

1 RAM in program space (except page0) 

DROM 0 ROM not in data space 

ROM in data space 

r> ExampleS.S Repeat Example 5.4 if MP/MC = 1, OVLY = 1, and DROM = L 

Solution a. Since MP/MC = I, TMS320C5416 is in microprocessor mode, the 16K ROM 
is off-chip in the program memory space. 

b. Since OVLY = 1, DARAM is mapped on to the program memory space 
at address 0080h-7fifh. Memory at addresses OOOOh-007fh is reserved for 
memory-mapped registers and the scratch ·pad purpose. 

c. Since DROM = I, 16K ROM is mapped on to the on-chip data memory 
at address cOOOh-fefth and memory from ffOOh-fffih is left for reserved 
purpose. 

5.6 Program Control 


The program control unit of TMS320C54xx processors contains the program 
counter (PC), the program counter-related hardware, hardware stack, repeat 
counters, and status registers. The PC addresses the program memory, either 
on-chip or off-chip, and is loaded in one of several ways, depending on the 
sequence of instructions being executed. These are 

• 	 Sequential: PC <- PC + 1. 

• 	 Branch: The PC is loaded with the immediate value following the branch 
instruction. 

• 	 Subroutine call: The PC is loaded with the immediate value following the 
call instruction. 

• 	 Interrupt: The PC is loaded with the address of the appropriate interrupt 
vector. 

• 	 Instructions such as BACC, CALA, etc.: The PC is loaded with the con­
tents of the accumulator low word. 
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• 	 End of a block repeat loop: The PC is load~d with the contents. of the 
block repeat program address start register. 

• 	 Return: The PC is loaded from the top of the stack. 

The program counter-related hardware PAGEN provides for the above 
options. The stack is used to save and restore the P~ value during subroutine 
calls and interrupts. It can also be used to save and restore the accumulator 
low word cir a data-memory value when required. . 

The TMS320C54xx processors provide hardware support for repetitive exe­
cution of either a single instruction or a block of instructions. Repeat counters 
are used for this purpose. 

A single instruction can be repeated N + 1 times by loading the value N 
in the repeat counter register (RC). Likewise, a block of instructions can be 
repeated N + 1 times by loading the value N in the block repeat counter reg­
ister (BRC). 

5.7 TMS320C54xx Instructions and Programming 

TMS320C54xx architecture supports an instruction set consisting of a large 
number of instructions [6]. Many of these are similar to the instructions for 
general-purpose microprocessors. lIowever, the TMS320C54xx instruction set 
consists ofa number of instructions that are specifically designed to carry out 
the numerically intensive signal-processing operations efficiently. In this sec­
tion, we shall summarize the instruction set of the TMS320C54xx processors. 
In particular, we shall discuss those instructions that are frequently used 
to implement DSP algorithms and illustrate their use by means of sample 
programs. 

5.7.1 Summary of the Instruction Set of TMS320C54xx Processors 

TMS320C54xx assembly language instructions canbe classified into the fol­
lowing categories based on their functions: 

Load and Store Operations 

• 	 Load instructions; Examples: LD, LDM 

• 	 Store instructions; Examples: ST, STM 

• 	 Conditional store instructions; Examples: CMPS, STRCD 

• 	 Parallel load and store instructions; Example: STIILD 
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• 	 Parallel load and multiply instructions; Example:.LDIiMAC 

• 	 Parallel store and add/subtract instructions; Examples: STIIADD, STIJSUB 

• 	 Parallel store and multiply instructions; Examples: STIIMPY, STIIMAC 

• 	 Miscellaneous load-type and store-type instructions; Examples: MVDD, 
MVPD 

Arithmetic Operations 

• 	 Add instructions; Examples: ADD, ADDC 

• 	 Subtract instructions; E:x:amples: SUB, SUBB 

• 	 Multiply instructions; Examples: MPr, MPYA 

• 	 Multiply-accumulate instructions; Examples: MAC, MACD 

• 	 Multiply-subtract instructions; Examples: MAS, MASA 

• 	 Double (32-bit operand) instruction~; Examples: DADD, DSUB 

• 	 Application-specific instructions; Example!!: EXP, LMS 

Logical Operations 

• 	 AND instructions; Examples: AND, ANDM 

• 	 OR instructions; Examples: OR, ORM 

• 	 XOR instructions; Examples: XOR, XORM 

• 	 Shift instructions; Examples: ROL, SFTL 

• 	 Test instructions; Examples: BIT, CMPM 

Program-Control Operations 

• 	 Branch instructions; Examples: B, BACC 
~ 

• 	 Callinstru~tions; Examples: CALL, CALA 

• 	 Interrupt instructIons; Examples: INT:R, TRAP 

• 	 Return instructions; Examples: RET, FRET. 

• 	 Repeat instructions; Examples: RPT, RPTB 

• 	 Stack-manipulating instructions; Examples: PUSHD, POPD 

• 	 Miscellaneous program-control instructions; Examples: IDLE, RESET 

For detailed descriptions of these· and other instructions, the reader is 
referred to the Texas Insttlll\1ents' TMS320C54xx DSP Reference Set, Volume 
2: Mnemonic Instruction Set [6]. We shall nowdiscus~ a few of these in­
structions in dei/iii. 
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Multiply Instruction (MPY) 

This instruction can take several form:s. One such form is 

MPY Xmern, Ymem,dst; where Xmem and Ymem are dual data-memory 
operands and dst is accumulator A or B. 

The instruction multiplies a data-memory value by anQ,ther data-memory 
value and stores the result in accumulator A or B. The register T is loaded 
with the Xmem value In the read-memory phase. . 

dst -I- (Xmem) x (Ymem); T -I- (Xmem) 

In the indirect addressing mode. the instruction can also modify the contents 
of the auxiliary registers used for indirect addressing. 

[> Example 5.6 Describe the operation of the following MPY instructions: 

a. MPY 13, B 

b. MPY #01234, A 

c. MPY:+AR2-, *AR4 + 0, B 

Solution Instruction (a) multiplies the current contents of the T register by the contents 
of the data-memory location 13 in the current data page. The result is placed 
in the accumulator B. 

Instruction (b) multiplies the current contents of the T register by the con­
stant 1234 and places the result in the accumulator A. 

Instruction (c) multiplies the contents of memory pointed by AR2 by the 
contents of memory pointed by AR4. The result is placed in the accumulator 
B. During this instruction execution, register T is loaded with the contents of 
the same data-memory location pointed by AR2. AR2 is then decremented by 
1 and AR4 is updated by adding to it the contents of ARO: 

Multiply and Accumulate Instruction (MAC) 

This instI1lction is an improvement over the MPY instruction. One of the 
several forms that this instruction can take is 

MAC Xmem, Ymem, src, dst; where Xmem and Ymem are dual data­
memory operands and src and dst are accumulators A and B. 

The instruction multiplies a data-memory value by another data-memory 
value and adds the product to the contents of the source, which may be either . 
of the two accumulators A and B. The result is stored in the other accu­
mulator. The register T is loaded with the Xmem value. 

---,.._----­



5.7 TMS320C54xx Instructions and Programming 135 

dst +- (Xmem) x (Ymem) + (src); T +- (Xmem) 

Similar to the ~PY instruction, this· instruction can modify the contents of 
auxiliary registers used in indirect addressing. 

I> Example 5.7 Describe the operation of the following MAC instructions: 

a. MAC * AR5+, #1234h, A 
( 

b. MAC *AR3-, *AR4+, B, A 

Solution Instruction (a) multiplies the contents of the data-memory location pointed 
by AR5 by the constant 1234h and adds the product to the contents of the 
accumulator A. During the execution, register T is loaded with- the content of 
the data-memory.location pomted by AR5. AR5 is then incremented by 1. 

Instruction (b) multiplies the contents of the data memory pointed by AR3 by 
the contents of the data memory pointed by AR4. The contents of the accu­
mulator B are added to the product and the result is placed in the accumula­
tor A. The register T is loaded with the contents of the same data-memory 
location pointed by AR3. AR3 is then decremented by 1 and AR5 is incre­
mented by 1. 

The MAC instruction is used for computing the sum of a series of product 
terms. 

Multiply and Subtract Instruction (MAS) 

This instruction is similar to· the MAC instruction. One form of this instruc­
tion is 

MAS Xmem, Ymem, src, dst; where Xmem and Ymem are dual data-memory 
operands and src and dst are accumulators A and B. 

The instruction multiplies a data-memory value by another data-memory 
vallie and subtracts the product from the contents of the sourc.e, which may 
be either of the two accQmulators A and B. The result is stored in the other 
accumulator. The register T is loaded with the Xmem value in the reaa­
memory phase. 

dst +- (src) - (Xmem) x (Ymem); T +- (Xmem) 

In the indirect inode, in addition to the multiply operation, the instruction 
can modify the contents of the auxiliary registers used for indirect addressing. 

I> Example 5.8 Describe the operation of the following MAS instruction: 

MAS *AR3-,'*AR4+, B. A 
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Solution 	 This instruction multiplies the contents of the data memory pointed by AR3 
by the contents of the data memory pointed by AR4. The product is sub­

. tracted from the contents of the accumulator B and the result is placed in the 
accumulator A. During this instruction, register T is loaded with the contents 
of the same data-memory location pointed by AR3. AR3 is then decremented 
by 1 and ARS incremented by 1. 

The MAS instruction is used for computing butterflies in FFT implementation. 

Multiply, Accumulate, and Delay Instruction (MACD) 

This instruction carries out all the functions of the MAC instruction and, in 
addition, copies the contents of the current data-memory address to the next 
higher data-memory address. However, the two operands of the multiplier are 
required to be a single data-memory value and a program-memory value. This 
feature -is equivalent to implementing the Z-l delay encountered in digital 
signal-processing algorithms. For this reason, the MACD instruction is often 
used for implementing FIR filters .. The format and all other features of the 
MACD instruction are ~e as those of the MAC instruction; 

Repeat Instruction (RPT) 

The format of this instruction is 

RPT Smem Smem is a single data-memory operand 
or . RPT Ilk k ;s a short or a long constant • 

The instruction loads the operand in the repeat counter, Re. The instruction 
following the RPT instruction is repeated k + 1 times, where k is the initial 
value of the RC. 

Due to the dedicated hardware support, the repeat instruction is used to 
repeat an instruction a given number of times without any penalty for JooP­
ing. It may be used to compute the sum·of products as required in the imple­
mentation of FIR filters. . 

I> Example 5.9 Explain what is accomplished by the following instruction sequence: 

RPT #2 
MAC *ARl+, *AR2-, A 

Solution 	 The first instruction loads the register RC with 2. This number is the repeat 
count for the ne~ MAC instruction. The MAC instruction executes three 
times. It multiplies and accumulates in A the data locations contents pointed 
to by the registers ARl and AR2. After each multiply and add the pointer ARl 
is incremented and,pointer AR2 is decremented. 

-.~.--~...---~..•. 
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Block Repeat Instruction (RPTB) 

RPTB instruction has the format 

RPTB pmad, where pmad is the program memory address denoting the end 
of the block of instructions to be repeated. 

This jnstruction is similar to the RPT instruction, except that it repeats a 
block of code a given number of times without any penalty for looping. One 
more than the number of times the block of instructions is to be repeated 
is initially loaded into the memory-mapped block repeat counter register, 
BRC. 

5.7.2 Programming Examples 

We now look at a few sample programs written for the TMS320C54xx signal 
processors. These programs particularly illustrate the use of some of the signal­
processing instructions ,and the addressing modes to access data operands. 

l> Example 5.10 	 Write a program to find the sum of a series of signed numbers stored at suc­
cessive locations in the data memory and place the result in the accumulator 
A, i.e., 

41fh 

A L dmad(i) (5.1) 
i=410h 

" 

Solution 	 The TMS320C54xx program for this example is shown in Figure 5.14. ARl is 
used as the pointer to the numbers and AR2 as the counter for the numbers. 
The program initializes the accumulator to 0, sets ARl to 410h to point to the 
first number and AR2 to the initial count. This will be used to track the num­
ber of processed locations at each step of execution. Sign-extension mode is 
selected to handle signed numbers. The program adds each number in ~urn to 
the accumulator, increments the pointer and decrements' the counter. The 
process is repeated until the count in AR2 reaches O. At the end of the pro­
gram, the accumulator A has the ~um of the numbers in location s 410h to 
41fh. ' 

l> Example 5.11 Write a cprogram to compute the S11m of three product terms given by the 
equation ' 

, y(n) = hox{n) + h1x(n - 1) + h2x(n - 2) (5.2) 

where x(n), x(n - 1) and x(n 2) are data samples stored at three successive 
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**********************.*************'**********************'!r*****' 

* 
* This program computes the signed sum of data memory locations 
* from address 410h to 41fh. The resuit is placed in A. 

* 
* A = dmad(410h) + 1:lmad(41lh)+ •.• dmad(41fh) 

* 
*************************************************************** 

.mmregs 

.global _c_intOO 

•text 

c intOO: 
STM 'lOH, AR2 Initialize counter AR2 = lOh 
STM '41OH, ARI Initialize pOinter ARI =410h 
LD 'OH, A Initialize sum A= 0 
SSBX SXM Select ~ign extension mode 

START: 
ADD *ARl+, A ; Add the next data value 
BANZ START, *AR2- Repeat if not done 
NOP No operation 

.end 

Figure 5.14 TMS320C54xx program for Example 5.10 

data~memory locations and 110. hI> and hz are constants stored at thr~eother 
successive locations in the data memory. The result y(n) is to be stored in the 
data memory. Use direct addressing mode to access the data memory. 

Solution 	 Let 110, hI> and h2 be stored starting at address h, and x(n), x(n. "": 1), and 
x(n - 2) starting at address 310h in the data memory.ProduQt terms hox(n), 
h1x(n - 1), and hzx(n.- 2) are computed using the MPY instruction by mov~ 
ing one of the operands to register T and accessing the other operand directly 
from the data memory. Note that the data~page pointer, DP, needs to be 
initialized before using the direct addressing mode to . access the operand. 
Product terms are computed in A or B and added. When all the three multi­
plications are done, the result accumulated in B is stored in the data memory 
yen). Since yen) is 32 bits long, it is saved at two successive locations labeled 
as y, with the lower 16 bits at memory location yand the higher 16 bits at the 
next memory location. The TMS320C54xx program for this example is shown 
in Figure 5.15. . 
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*************************************************.*'********************** 
* 
* This program computes multiply and accumulate using direct addressing 
* mode. 
* 
* yen) = h(O)x(n) + h(1)x(n-1) + h(2)x(n-2) 
* 
* h(O), h(l), and h(2) are stored in,data-memory locations starting at 
* location hand x{n), x(n-l), and x{n-2) are stored in data-memory 
* locations starting at location x. yen) is saved in data-memory 
* locati~n y (low 16 bits) and y + I (high 16 bits). 
* 
**********************************************************************,,* 

.global c intOO 

x .usect "Input Samples", 3 
y .usect "Output", 2 
h .usect "Coefficients·, 3 

.text 

c intOO: 
SSBX 
LD 
LD 
LD 

MPY 

SXM 
#h, DP , 
@h, T 
lx, DP, 
@x, A 

Select sign extension mode 
Select the data page for coefficients 
Get the coefficient h(O) 
Select the data page for input samoles 
A = x{n)*h(O) 

LD 
LD 
LD 
MPY 

#h, DP 
@h+1, T 
lx, DP 
@x+l, B 

Select the data page for coefficients 
Get· the coefficient h(l) 
Select the data page for input signals 
B = x(n-I)*h(1) 

ADD ' A. B B x(n)*h(O) + x(n-l)*h(l) 

LD 
LD 
LD 
MPY 

#h, DP 
@h+2, T 
lx, DP 
@x+2, A 

Select the data page for coefficients 
Get the coefficient h(2) 
Select the data page for ,input signals 
A = x(n-2)*h(3) 

ADD A, B B x (0) + x(n-l)*h(l) + x(n-2)*h(3) 

LO 
STL 
STH 
NOP 

#y, DP 
B, @y 
B, @y+1 

Select the data page for output 
Save low part of output 
Save high part of output 
No operation 

.end 

_.._----- --, 
TMS320C54xx program tor Example 5.11 
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!> Example 5.12 	 Repeat the problem of Example 5.11 using the indirect addressing mode to 
access data. 

Solution 	 In this example, let us use the auxiliary register AR2 to address the data using 
the indirect addressmg mode. AR2 is initialized to 310h, the location where 
x(n) is storeg,and is advanced to the next address after each multiply opera­

**********************~~+++********************************************* 

* 
* This program computes multiply and.accumulate using. indirect 
* addressing mode. 
* 
* yen) = h(O)x(n) + h(l)x(n-l) + h(2)x(n-2) 
* 
* 	 h(O). hell. and h(2) are stored in data-memory locations starting at 

location h. x(n)~ x(n-l), and x(n-2) are stored in data-memory* 
locations 	31Oh. 311h, &312h resp. yen) is saved in data-memory* 
location 313h (low 16 bits) and 314h ~high 16 bits)* 


* 

************************************************************************ 

.global _c~intOO 

h 	 .int 10, 20, 30 

.text 

c intOO: 
SSBX SXM Select sign extension mode 
STM 131OH, AR2 lnitialize pointer AR2 for x(n) stored at 

310H 
STM Ih, AR3 Initialize pointer AR3 for coefficients 

MPY *AR2+, *AR3+, A A : x(n)*h(O) 

MPY *AR2+, *AR3+, B B = x(n-1)*h(1) 

AOD A. B B = x(n)*h(O) + x(n-1}*h(1) 

MPY *AR2+. *AR3+. A ; A =x(n-2)*h(2) 

ADD A. B ; 8 = x(n}*h(O} + x(n-l)*h(i) + x(n-2)*h(2} 

STl B. *AR2+ ; Save low part of result 
STR B, *AR2+ ;._Save h,igh part of result 
NOP ; .No operation 

.end 

Figure 5.16 TMS320C54xx program for Example 5.12 
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tion. AR3 is used as the pointer to access coefficients starting at h. At the end 
of three multiply operations, AR2 points to 313h, the address at which the 
lower 16 bits of yen) are to be stored. The TMS320C54xx program for this 
example is shown in Figure 5.l6. 

l> 	 E~ample 5.13 Repeat the problem of Example 5.11 by using the MAC instruction. 

************************************************************************ 
1<' 

* This program computes multiply and accumulate using the MAC 
* instruction 
* 
* 	 yen) ~ h(O)x(n) + h(l)x(n-l) + h(2)x(n-2) 

\ 

* 
* 	 where, h(O) ,hO). and h(2) are in the program-memory locations 

starting at h, x(n). x(n-1), and x'(n-2) are in data":memory locations* 
starting at x.y(n) ,is to be saved in location y (low 16 bits) and* 

* y + I (high 16btts). 

* 

************************************************************************ 

.global _c_intOO' 

.data 

:bss x, 3 

.bss y, 2 


h 	 •int 10, 20, 30 

.text 

c intOO: 
SSBX SXM Select s1gn extension mode 
STM #X, AR2 Initialize AR2 to point to x(n) 
STM #h, AR3 Initialize AR3to point to h(O) 
La DOH, A Initialize result in A = 0 

RPT #2 	 Repeat the next operation 3 times 
MAC *AR2+, *AR3+. A ; yen) computed 

STM #y, AR2 ; Se~ect the page for yen) 
STL A. *AR2+ ; Save the low part of yen) 
STH A. ,*AR2+ Save the high part of yen) 
NOP ; No operation 

.end 

Figure 5.17 The TMS320C54xx program for Example 5.13 
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Solution 	 The MAC instruction multiplies the contents of two data-memory locations 
and adds the result to the previous contents of the accumulator being used. 
(Note that only auxiliary registers AR2-AR5 can be used.) This instruction is 
repeated twice using RPT ipstruction. After each MAC instruction the auxil~ 
iary registers, which are being used, should be incremented by 1. Finally, the 
result is stored in the memory location pointed by ''I' using STL instruction 
first for the lower 16 bits and then using STH instruction for the higher 16 bits., 
The TMS32054Cxx program for this example is shown in Figure 5.17. , 

5.8 On-Chip Peripherals 

On-chip peripherals facilitate interfacing with external devices such as mo­
dems and analog-to-digital converters. They also provide certain features that 
are required for implementing real time systems using the processors. All the 
'54xx devices have the same CPU, but different on-chip peripherals are avail­
able in different devices. These peripherals include general-purpose I/O pins, 
a software-programmable wait-state generator, hardware timer, host port in­
terface (HPI), clock generator, and serial ports. Of these, the general-purpose 
I/O and the software-programmable wait-state generator are described in­
Chapter 9 on parallel peripheral devices. The timer, the host port interface, 
clock generator, and serial ports are briefly described below. The tables in 
Appendix A give details of the information required for programming these 
on-chip peripherals.' 	 , 

5.8.1 ' Hardware Timer 

The timer is an on-chip down counter that can be used to generate a signal to 
. initiate an interrupt or to initiate any other process. The timer consists ofthree 

memory-mapped registers-TIM, PRD, and TCR. A logical block diagram of 
the timer circuit is shown in Figure 5.18. The timer register (TIM) is a 16wbit 
memorywmapped register that decrements at every pulse from the prescaler 
block (PSC). The timer period register (PRD)' is a 16-bit memory-mapped 
register whose contents are loaded onto the TIM whenever the TIM decre­
ments to zero or the device is reset (SRESET). The timer can also be inde­
pendently reset using the TRB signal. The timer control register (TCR) is a 
16-bit memory-mapped register that contains status and control bits. Table 5.4 
shows .the functions of the various bits in the TCR. The prescaler block is 
also an on-chip counter. Whenever the prescaler bits count down to 0, a clock 
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PSC 

Borrow Borrow 
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CPU clock 

TSS 

• ~TmT 

> II> TOUT 

Figure 5.18 Logical block diagram of timer circuit 

(Courtesy of Texas Instruments Inc.) 

pulse is given to the TIM register that decrements the TIM register by 1. The 
TDDR bits contain the divide-down ratio, which is loaded onto the prescaler 
block after each time the prescaler bits count down to O. That is to say that the 
4-bit value of TDDR determines the divide-by ratio of the timer clock with 
respect to the system clock. In other words, the TIM decrements either at the 
rate of the system clock or at a rate slower than that as decided by the value 
of the TDDR bits. TOUT and TINT are the output signals generated as the 
TIM register decrements to O. TOUT can .trigger the start of the conversion 
signal in an ADC interfaced to the DSP. The sampling frequency of the ADC 
determines how frequently it receives the TOUT signal. TINT is used to gen­
erate interrupts, which are required to service a peripheral such as a DRAM 
controller periodically. The timer can also be stopped, restarted, reset, or dis­
abled by specific status bits. 

5.8.2 Host Port Interface (HPI) 

The host port interface (HPJ) is a unit that allows the DSP to interfa.ce(to an 
8-bit or a 16-bit host device or a host processor. The HPI communicates with 
the host independently of the DSP. The HPI features allow the host to inter­
rupt the DSP, or vice versa, when required; The interface contains minimal 
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Table 5.4 . Function of Various Bits in the TCR Registers 

Reset 
B'it Name Value Function 

15-12 Reserved Reserved; always read as o. 
11 Soft o Used in conjunction with the Free bit to determine the 

state of the timer when a breakpoint is encountered in ' 
the HLL debugger. When the Free bit is cleared, the 
Soft bit selects. the timer :mode. 

Soft 9 The timer stops immediately. 

Soft = 1 The timer stops when the co~ter 
decrements to O. 

10 Free o Used in conjunction with the Soft bit to determine the 
state of the timer when a breakpoint is encountered in 
the HLL debugger. When the Free bit is cleared, the 
Soft bit selects the timer mode. 

Free = 0 The Soft bit selects the timer mode. 

Free = 1 The timer runs free regardless of the Soft bit. 

9-6 PSC Timer prescaler counter. Specifies the count for the on­
chip timer. When PSC is decremented past 0 or the 
timer is reset; PSC is loaded with the contents of TDDR 
and the·TIM is decremented. 

5 TRB Timer reload. Resets the on-chip timer. When TRB is 
set, the TIM is loaded with the value in the PRD and 
the PSCis loaded with the value in TDDR. TRB is 
always read asa O. 

4 TSS .0 Timer stop status. Stops or .starts the on-chip niner. At 
reset, TSS is cleared and the timer immediately starts­
timing. 

TSS ~ 0 The timer is started. 

TSS The timer is stopped. 

3-0 TDDR 0000 Timer divide-down ratio. Specifies the timer divide­
down ratio (period) for the on-chip timer. When PSC is . 
decremented past 0, PSC is loaded with the .contents of 
TDDR. 

(Courtesy of Texas Instruments Inc.) 

external logic,' so that a system with a host and a.DSP can be designed without 
increasing the hardware on the board. The HPJ interfaces to the PC parallel 
ports directly. A generic block diagram of the HPJ is shown in Figure 5.19. 
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HPIl6HOST ~ DATA[15:0]. PPD[15:0] : 

HINT 
DMAI I 

Address[l7:0] 
HCNTLO 
HCNTU 
HBIL 

RIW' ­_~=~~;(ASData strobes' HRIW ~.
READY " HRDY HDSl, HDS2, HCS 

~ 
Figure 5.19 A generic diagram of the host port interface 

(Courtesy of Texas Instruments Inc.) 

Important signals in the HPI are as follows: 

• 	 The 16-bit qata bus and the 18-bit address bus. 

• 	 The host interrupt, HINT, for the DSP to signal the host when its atten­
tion is required. 

• 	 HRDY, a DSP output indicating that the DSP is ready for transfer. 

• 	 HCNTLO and HCNTU, control signals that indicate the type of transfer 
to carry out. . the transfer types are data, address, etc. 

• 	 HBIL. If this is low it indicates that the current byte is the first byte; if it 
is high, it indicates that it is the second byte. 

• 	 HR/W, indicates ifthe host is carrying out a read operation or a write 
operation. 

By appropriately using these signals, the DSP device can be interfaced on a 
host such as a Pc. 

5.8.3. Clock Generator 

The clock generator on TMS320C54xx devices has two options-an external 
clock and the internal clock. In the case of the external clock option, a clock 
source is directly connected to the device. The internal clock source option, on 
the other hand, uses an internal clock generator and a phase locked loop 
(PLL) circ)lit. The PLL, in turn, can be hardware configured or software pro­
grammed. Not all devices of the TMS320C54xx family have all these clock 
options; they vary from device to device. 
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5.8.4 Serial 110 Ports 

Three types of serial ports are available on the '54ndevices,'depending on the 
type of the device. These are synchronous, buffered, and time-division multi­
plexed ports. 

The synchronous serial ports are high-speed, full-duplex ports that provide 
direct communication with serial devices, such as codec, and analog-to-digital 
(AID) converters. A buffered serial. port (BSP) is asynchronous serial port that 
is provided with an autobuffering unit and is clocked at the full clock rate. The 
autobuffering unit supports high-speed data transfers and reduces the over­
head of servicing interrupts. A time-division multiplexed (TDM) serial port is 
a synchronous. serial port that is provided to allow time-division multiplexing 
of the data. We will cover serial UO in chapter 10. 

The functioning of each of these on-chip peripherals is controlled by 
memory~mapped registers assigned to the respective peripheral. Figure 5;8(b) 
gives the list of peripheralmemoty-mapped registers along with their ad­
dresses for the TMS320C54xx devices. 

5.9 Interrup~s of TMS320C54xx. Processors 

Many times. when the CPU is in the midst of executing a program, a periph­
eral device may require a service from the CPU. In such a situation, the main 
program maybe interrupted by a signal generated by the peripheral device. 
This results in the processor suspending the main program in order to execute 
another program. called interrupt service routine, to service the peripheral 
device. On completion of the interrupt service routine, the processor returns 
to the main program to continue from where it left. 

Interrupt may be generated either by an internal or an external device. It 
may also be generated by software. Not all interrupts are serviced when they 
occur. Only those interrupts that are called nQnmaskable are serviced when­
ever they occur. Other interrupts, which are called maskable interrupts, are 
serviced only if they are enabled. There is also a priority to determine which 
interrupt gets serviced first if more than one interrupts occur simultaneously. 

Almost all the devices of the TMS320C54Xxfamily have 32 interrupts. How­
ever. the types and the number under each type vary from device to device. 
Some ofthese interrupts are reserved for use by the CPU. Figure 5.20 gives the 
types of interrupts, their locations, and priorities for· TMS320C54xx pro­
cessors. 

A more detailed description of interrupts and how an interrupt is handled 
when it occurs is given in Chapter 9.. . 
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LOCATION 

NAME DECIMAL HEX PRIORITY FUNCTION 

RS; SINTR ·0 00 Reset (hardware and 
software reset) 

NMI, SINT16 4 04 2 Nonmaskable interrupt 
SINT17 8. 08 Software interrupt #17 
SINT18 12 OC Software interrupt #18 
SINT19 16 10 Software interrupt #19 
SINT20 20 14 Software interrupt #20 
SINT21 24 18 Software interrupt #21 
SINT22 28 1C Software interrupt #22 
.SINT23 32 . 20 Software interrupt #23 
SINT24 36 24 Software interrupt #24 
SINT25 40 28 Software interrupt #25 
SINT26 44 2C Software interrupt #26 
SINT27 48 30 Soft;vare interrupt #27 
SINT28 52 3£ Software interrupt #28 
SINT29 56 38 Software interrupt #29 

·SINT30 60 3C Software interrupt #30 
INTO, SINTO 64 40 3 External user interrupt #0 
INT1, SINT1 68 44 4 External user interrupt #1. 
INT2, SINT2 72 48 5 External user interrupt #2 
TINT, SINT3 76 4C 6 Timer interrupt 
RINTO, SINT4 1 80 50 7 McBSP #0 receive 

interrupt (default) 
XINTO, SINT5 84 54 8 McBSP #0 transmit 

interrupt (default) 
RINT2, SINT6 sa 58 .9 McBSP #2 receive 

interrupt (default) 
. XINT2,. SINH 92 5C 10 McBSP #2 transmit 

Interrupt (default) 
INT3, SINT8 96 60 11 External user interrupt #3 

.HINT, SINT9 100 64 12 HPJ interrupt 
RINT1, SJNT10 104 68 . . 13 McBSP #1 receive 

interrupt (default) 
XINT1, SINT11 106 . 6C 14 McBSP #1 transmit 

interrup~ (default) 
DMAC4, SINT12 . 112 70 15 DMA channel 4 (default) 
DMAC5, SINT13 116 74 16 DMA channel 5 (default) 
Reserved 120-127 78-7F Reserved 

Figure 5.20 Table for interrupt locations and priorities for TMS320C54xx processors 

·(Courtesy of Texas Instruments Inc.) 
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5.10 Pipeline Operation of TMS320C54xx Processors 

The CPU ·of'54xx devices has a six-level-deep· instruction pipeline. The· six 
stages of the pipeline are independent of each other; This allows overlapping 
execution of instructions. During any given cycle, up to six different instruc­
tions can be active, each at a different stage of processing. The six levels of the 
pipeline structure are program prefetch, program fetch, decode, access, read, 
and execute. . 

1. 	 During program prefetch, the program address bus, PAB, is loaded with 
the address of the next instruction to be fetched. 

2. 	 In the fetch phase, an instruction word is fetched from the program bus, 
PB, and loaded into the instruction register,IR. These two· phases form 
the instruction fetch sequence. 

3. 	During the decode stage, the contents of the instruction register, IR, 
are decoded to determine the type of memory access· operation and the 
control signals required for the data-address generation unit and the 
CPU. 	 . 

. Figure 5.21 Six-stage pipeline of TMS320C54xx execution 

(Courtesy of Texas Instruments Inc.) 
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l> Example 5.14 

. Solution 

4-. 	 The access phase outputs the read operand's address on the data address 
bus, DAB. If a second operand is required, the other data address bus, 
CAB, is also loaded with an appropriate address. Auxiliary registers in 
indirect addressing mode and the stack pointer (SP) are also updated., 

5. 	 In the read phase the data operand(s), if any, are read from the data 
buses, DB and CB. This phase completes the two-phase read process and 
starts the two-phase write process. The data address of the write oper­
and, if any, is loaded into the data write address bus, EAB. 

6. 	 The execute phase writes the data using the data write bus, EB, and com­
pletes the operand write· sequence. The instruction is also executed in 
this phase. . 

Figure 5.21 shows the six stages of the pipeline .and the event.s that occur in 
eachstage. The following examples demonstrate how the TMS320C54xx pipe­
line works while executing instructions. 

Show the pipeline operation of the following seque~ce of instructions if the 
initial value of AR3 is 80 and the values stored in memory location 80, 81, 82 
are 1, 2, and ,3. . 

LD*AR3+. A 
ADD #lOOOh. A 
STLA. *AR3+ 

Figure 5.22 is the solution to this example problem. 

Exec & 

CYGle Prefetch Fetch Decode Access Read Write AR3 A 

1· LD 80 X 

2 ADD LD 80 X 

3 STL ADD LD 80 X 

4 STL ADD lcD 81 X 

5 

6 

STL ADD 
STL 

LD- LD 
81 
82 

1 
OOOlh 

7 STL ADO 82 1001h 

8 STL 82 1001h 

Figure 5.22 Pipeline operation of the instruction sequence of Example 5.14 
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03 06 

03 06 

03 06 

15h 06 

Figure 5.23 Pipeline operation of the instruction sequence of Example 5:'5 

l> Example 5.15 Show the pipeline operation of the following sequence of instructions if the 
initial values of ARI, AR3, A are 84, 81, 1 and the values stored in memory 
location 81, 82, 83. 84 are 2, 3, 4, 6. Also provide the values of registers AR3, 
ARI. T and accumulator, A, after completion of each cyde. 

ADO *AR3+. A 
LD *ARl+. T 
MPY *AR3+.B 
ADD B. A, 

Solution Figure 5.23 is. the solution to this example problem. 

5. 11 Summary 

In this chapter, we have looked at the architectural features of the commercially 
available programmable digital signal processors. In particular, we have studied 
in detail the following features of the Texas Instruments.TMS320C54xx DSPs: 

• 	 Architecture of the processors, consisting of the bus structure, central 
processing unit (CPU), and internal memory organization 
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• 	 ,Addressing modes, conslstmg of immediate addressing, absolute ad­
dressing, accumulator addressing, direct addressing, indirect addressing, 
memory-mapped addressing, and stack addressing 

• 	 Address-generation unit, including single-operand address modifica­
tions, circular address modifications, bit-reversed address modifications, 
and dual-operand address modifications 

• 	 Assembly language instructions, including signal processing-specific in­
structions and programming examples 

• 	 Memory organization 

• 	 On-chip peripherals 

• 	 Interrupts 

• 	 Pipeline operation 
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Assignments 

5.1 	 How will you configure a TMS320C5416 processor to have the following on­
chip memories? Specify the address range in each case. 

On-chip DARAM: for program 

On-chip ROM: for program 

How much RAM for data will be available in the specified configuration? 

5.2 	 Explain the difference between the internal and external modes of clocking 
TMS320C54xx processors. How do you vary the clock frequency in each case? 

5.3 	 Identify the addressing mode of the source operand In each of the follo.:ving 
instructions: 

a: 	 ADD >I- AR2, A 

b. 	 ADD >I- AR2+:, A 
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c. ADD*AR2. + %, A 

d. ADD #Ofih, A 

e. ADD 1234h, A 

f. ADD *AR2+ OB, A 

g. ADD *+AR2, A 

5.4 	 What will be the .contents of accumulator A after the execution of the in­
struction 

LD 	 *AR4,4, A 

if the currentAR4 points to a memory location whose contents are 8bOeh. and 
the ~XM bit of the status register STl is set? .. 

5.5 	 Write a sequence of TMS320CS4xx instructions to configure a circular buffer 
with a start address at0200h and an end address at 021fh with current buffer 
pointer (AR6) pointing to address 020Sh. 

5.6 	 Write a TMS320CS4xx program to compute the equation 

y= mx+ c 

Assume that ~ and c 'are stored in the data memory and m in the program 
memory; The result should be stored in the data memory. 

5.7 	 Write a TMS320C54xx program to implement second~order IIR filter equations 

den) = x(n) + d(n -l)al + den - 2)a2 

y(n) = 	d(n)bo+ den - 1)b1 + d(n - 2)b2 

where ah a2, bo, bI , b2 are filter coefficients (integers), x(n) is the latest input 
sample, y(n) is the filtered output sample, and den) is an intermediate result. 
You may assume that, during calculations, all signals remain within values 
represented by 16 bits. 	 . .. 

S.8 	 Write a TMS320CS4xx program to read the cosine value of a variable from 
a table stored in the program memory and store it in the data memory. The 
variable is located at address VALUE in the· data memory, an.d the cosine 
value should be stored at the same location. The cosine table is stored at 
address TABLE in the program memory. 

5.9 	 Write a TMS320CS4:x::(C program to read .100h words from the input port at 
address INPORT and store them in the data-mem9rystarting at address 
BUFFER. .. . . 

5.10 	. Writ.e a TMS320C54xx program to mask the lower 6 bits of a word stored in 
the data memory and write the modified word back at the same location. 

5.11 	 What is the role of the interrupt pins in il DSP device? Are these the only 
means of interrupting a DSP program? How do you prevent a signal on an 
interrupt pin from interrupting a time-critical program being executed by the 
DSP? . 
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5;12 	 By means ofa figur~, explain the pipeline operation ofthe following sequ~nce 
of TMS320C54xx: instructions if the initialva1ue of AR3 is 80 and the values 
stored in memory location 80,81,82 are 1,2, and 3. 

LD *AR3+, A 
ADD *AR3+. A 
STL A. 	 ,*AR3+ 
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UNIT III TMS320C6X PROGRAMMABLE DSP PROCESSOR  
 
Commercial TI DSP processors, Architecture of TMS320C6x DSP Processor, 
Linear and Circular addressing modes, TMS320C6x Instruction Set, Assembler 
directives, Linear Assembly, Interrupts, Multichannel buffered serial ports, 
Block diagram of TMS320C67xx DSP Starter Kit and Support Tools 

 

COMMERCIAL  TI DSP PROCESSORS  : 

 Digital signal processors, such as the TMS320 family of processors, are 
used in a wide range of applications, such as in communications, controls, 
speech processing,and so on. They are used in cellular phones, digital 
cameras, high-definitiontelevision (HDTV), radio, fax transmission, 
modems, and other devices. 

  These devices have also found their way into the university classroom, 
where they provide an economical way to introduce real-time digital 
signal processing (DSP) , 

 Texas Instruments introduced the TM320C6x processor, based on the 
very-longinstruction- word (VLIW) architecture.This new architecture 
supports features that facilitate the development of efficient high-level 
language compilers.  

 Throughout to the C/C++ language simply as C.Although 
TMS320C6x/assembly language can produce fast code, problems with 
documentation and maintenancemay exist.With the available C compiler, 
the programmer. 

 Digital signal processors such as the TMS320C6x (C6x) family of 
processors are like fast special-purpose microprocessors with a 
specialized type of architecture and an instruction set appropriate for 
signal processing.  

 The C6x notation is used to designate a member of Texas Instruments’ 
(TI) TMS320C6000 family of digital signal processors. The 
architecture of the C6x digital signal processor is very well suited for 
numerically intensive calculations. 

  Based on a very-long-instruction-word (VLIW) architecture, the C6x is 
considered to be TI’s most powerful processor. 

 Digital signal processors are used for a wide range of applications, from 
communications and controls to speech and image processing. The 
general-purpose digital signal processor is dominated by applications in 
communications (cellular). 
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 Applications embedded digital signal processors are dominated by 
consumer products.They are found in cellular phones, fax/modems, disk 
drives, radio, printers,hearing aids, MP3 players, high-definition 
television (HDTV), digital cameras, and so on.  

 These processors have become the products of choice for a number of 
consumer applications, since they have become very cost-effective.They 
can handle different tasks, since they can be reprogrammed readily for a 
different application. 

 DSP techniques have been very successful because of the development of 
low-cost software and hardware support. For example, modems and 
speech recognition can be less expensive using DSP techniques.  

 DSP processors are concerned primarily with real-time signal processing. 
Realtime processing requires the processing to keep pace with some 
external event, whereas non-real-time processing has no such timing 
constraint.The external event to keep pace with is usually the analog 
input.Whereas analog-based systems with discrete electronic components 
such as resistors can be more sensitive to temperature changes, DSP-
based systems are less affected by environmental conditions. 

 DSP processors enjoy the advantages of microprocessors. They are easy 
to use, flexible, and economical. A number of books and articles address 
the importance of digital signal processors for a number of applications 
[1–22]. Various technologies have been used for real-time processing, 
from fiberoptics for very high frequency to DSPs very suitable for the 
audio-frequency range. Common applications using these processors have 
been for frequencies from 0 to 96kHz. Speech can be sampled at 8 kHz 
(the rate at which samples are acquired), which implies that each value 
sampled is acquired at a rate of 1/(8 kHz) or 0.125ms. A commonly used 
sample rate of a compact disk is 44.1kHz.  

 Analog/digital (A/D)-based boards in the megahertz sampling rate rang 
are currently available. 

 The basic system consists of an analog-to-digital converter (ADC) to 
capture an input signal. The resulting digital representation of the 
captured signal is then processed by a digital signal processor such as the 
C6x and then output through a digital-to-analog converter (DAC).  

 Also included within the basic system are a special input filter for anti-
aliasing to eliminate erroneous signals and an output filter to smooth or 
reconstruct the processed output signal. 
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TMS320C6713 Digital Signal Processor : 
 
The TMS320C6713 (C6713) is based on the VLIW architecture, which is very 
well suited for numerically intensive algorithms. The internal program memory 
is structured so that a total of eight instructions can be fetched every cycle. For 
example, with a clock rate of 225MHz, the C6713 is capable of fetching eight 
32-bit instructions every 1/(225 MHz) or 4.44 ns. 
 
Features of the C6713 include 264 kB of internal memory (8kB as L1P and L1D 
Cache and 256kB as L2 memory shared between program and data space), eight 
functional or execution units composed of six arithmetic-logic units (ALUs) and 
two multiplier units, a 32-bit address bus to address 4 GB (gigabytes), and two 
sets of 32-bit general-purpose registers. 
 
The C67xx (such as the C6701, C6711, and C6713) belong to the family of the 
C6x floating-point processors, whereas the C62xx and C64xx belong to the 
family of the C6x fixed-point processors. The C6713 is capable of both fixed- 
and floatingpoint processing. 
 

ARCHITECTURE OF  TMS320C6X DSP PROCESSOR : 

The TMS320C6713 onboard the DSK is a floating-point processor based on the 
VLIW architecture [6–10]. Internal memory includes a two-level cache 
architecture with 4 kB of level 1 program cache (L1P), 4 kB of level 1 data 
cache (L1D), and 256 kB of level 2 memory shared between program and data 
space. It has a glueless (direct) interface to both synchronous memories 
(SDRAM and SBSRAM) and asynchronous memories (SRAM and EPROM). 
Synchronous memory requires clocking but provides a compromise between 
static SRAM and dynamic DRAM, with SRAM being faster but more expensive 
than DRAM. 
On-chip peripherals include two McBSPs, two timers, a host port interface 
(HPI), and a 32-bit EMIF. It requires 3.3 V for I/O and 1.26 V for the core 
(internal). Internal buses include a 32-bit program address bus, a 256-bit 
program data bus to accommodate eight 32-bit instructions, two 32-bit data 
address buses, two 64-bit data buses, and two 64-bit store data buses.With a 32-
bit address bus, the total memory space is 232 = 4GB, including four external 
memory spaces: CE0, CE1, CE2, and CE3. 
Independent memory banks on the C6x allow for two memory accesses within 
one instruction cycle. Two independent memory banks can be accessed using 
two independent buses. Since internal memory is organized into memory banks, 
two loads or two stores of instructions can be performed in parallel. No conflict 
results, 
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if the data accessed are in different memory banks. Separate buses for program, 
data, and direct memory access (DMA) allow the C6x to perform concurrent 
program fetches, data read and write, and DMA operations.With data and 
instructions residing in separate memory spaces, concurrent memory accesses 
are possible. 
The C6x has a byte-addressable memory space. Internal memory is organized as 
separate program and data memory spaces, with two 32-bit internal ports (two 
64- bit ports with the C64x) to access internal memory. The C6713 on the DSK 
includes 264kB of internal memory, which starts at 0x00000000, and 16MB of 
external SDRAM, mapped through CE0 starting at 0x80000000.The DSK also 
includes 512 kB of Flash memory (256 kB readily available to the user), 
mapped through CE1 starting at 0x90000000.  
 

 

The L2 internal memory configuration, included with CCS [7]. Table 3.1 shows 
the memory map, also included with CCS [7]. A schematic diagram of the DSK 
is included with CCS (6713dsk_schem.pdf). 
With the DSK operating at 225MHz, one can ideally achieve two multiplies and 
accumulates per cycle, for a total of 450 million multiplies and accumulates 
(MACs) per second. With six of the eight functional units in Figure 3.1 (not the 
.D units described below) capable of handling floating-point operations, it is 
possible to perform 1350 million floating-point operations per second 
(MFLOPS). 
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 Operating at 225MHz, this translates into 1800 million instructions per second 
(MIPS) with a 4.44-ns instruction cycle time. 
 
 FUNCTIONAL UNITS : 
 
 The CPU consists of eight independent functional units divided into two data 
paths, A and B, as shown in Figure 3.1. Each path has a unit for multiply 
operations (.M), for logical and arithmetic operations (.L), for branch, bit 
manipulation, and arithmetic operations (.S), and for loading/storing and 
arithmetic operations (.D). The .S and .L units are for arithmetic, logical, and 
branch instructions. All data transfers make use of the .D units. 
 
The arithmetic operations, such as subtract or add (SUB or ADD), can be 
performed by all the units, except the .M units (one from each data path). The 
eight unctional units consist of four floating/fixed-point ALUs (two .L and two 
.S), two fixed-point ALUs (.D units), and two floating/fixed-point multipliers 
(.M units). Each functional unit can read directly from or write directly to the 
register file within its own path.  
 
Each path includes a set of sixteen 32-bit registers, A0 through A15 and B0 
through B15. Units ending in 1 write to register file A, and units ending in 2 
write to register file B. Two cross-paths (1x and 2x) allow functional units from 
one data path to access a 32-bit operand from the register file on the opposite 
side.There can be a maximum of two cross-path source reads per cycle.  
 
Each functional unit side can access data from the registers on the opposite side 
using a cross-path (i.e., the functional units on one side can access the register 
set from the other side). There are 32 generalpurpose registers, but some of 
them are reserved for specific addressing or are used for conditional 
instructions. 
 

LINEAR AND CIRCULAR ADDRESSING MODES :  

Addressing modes determine how one accesses memory.They specify how data 
are accessed, such as retrieving an operand indirectly from a memory location. 
Both linear and circular modes of addressing are supported. The most 
commonly used mode is the indirect addressing of memory. 
 
Indirect Addressing : 
 
Indirect addressing can be used with or without displacement. Register R 
represents one of the 32 registers A0 through A15 and B0 through B15 that can 
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Specify or point to memory addresses.As such, these registers are pointers. 
Indirect addressing mode uses a “*” in conjunction with one of the 32 registers. 
To illustrate, consider R as an address register. 
1. *R. Register R contains the address of a memory location where a data value 
is stored. 
2. *R++(d). Register R contains the memory address (location). After the 
memory address is used, R is postincremented (modified) such that the new 
address is the current address offset by the displacement value d. If d = 1 (by 
default), the new address is R + 1, or R is incremented to the next higher 
address in memory. A double minus (--) instead of a double plus would 
update or postdecrement the address to R - d. 
3. *++R(d). The address is preincremented or offset by d, such that the current 
address is R + d. A double minus would predecrement the memory address 
so that the current address is R - d. 
4. *+R(d). The address is preincremented by d, such that the current address is 
R + d (as with the preceding case). However, in this case, R preincrements 
without modification. Unlike the previous case, R is not updated or modified. 
 
 Circular Addressing : 
 
Circular addressing is used to create a circular buffer.This buffer is created in 
hardware and is very useful in several DSP algorithms, such as in digital 
filtering or correlation algorithms where data need to be updated.  the 
implementation of a digital filter in assembly code using a circular 
buffer to update the “delay” samples. Implementing a circular buffer using C 
code is less efficient. 
 
The C6x has dedicated hardware to allow a circular type of addressing. This 
addressing mode can be used in conjunction with a circular buffer to update 
samples by shifting data without the overhead created by shifting data directly. 
as a pointer reaches the end or “bottom” location of a circular buffer that 
contains the last element in the buffer, and is then incremented, the pointer is 
automatically wrapped around or points to the beginning or “top” location of the 
buffer that contains the first element. 
 
Two independent circular buffers are available using BK0 and BK1 within 
the AMR. The eight registers A4 through A7 and B4 through B7, in conjunction 
with the two .D units, can be used as pointers (all registers can be used for 
linear addressing).The following code segment illustrates the use of a circular 
buffer using register B2 (only side B can be used) to set the appropriate values 
within  AMR: 
 
 



CEC337 DSP ARCHITECTURE AND PROGRAMMING                                     MRK IT  \ ECE  

7 
PREPARED BY : R.ARULMOZHI  AP/ECE 

MVKL .S2 0x0004,B2 ;lower 16 bits to B2. Select A5 as pointer 
MVKH .S2 0x0005,B2 ;upper 16 bits to B2. Select BK0, set N = 5 
MVC .S2 B2,AMR ;move 32 bits of B2 to AMR 
 
The two move instructions MVKL and MVKH (using the .S unit) move 0x0004 
into the 16 LSBs of register B2 and 0x0005 into the 16 most significant bits 
(MSBs) of B2. The MVC (move constant) instruction is the only instruction that 
can access the AMR and the other control registers (shown in Appendix B) and 
executes only on the B side in conjunction with the functional units and 
registers on side B. 
 
 A 32- bit value is created in B2, which is then transferred to AMR with the 
instruction MVC to access AMR [6]. The value 0x0004 = (0100)b into the 16 
LSBs of AMR sets bit 2 (the third bit) to 1 and all other bits to 0. This sets the 
mode to 01 and selects register A5 as the pointer to a circular buffer using block 
BK the modes associated with registers A4 through A7 and B4 through B7.The 
value 0x0005 = (0101)b into the 16MSBs of AMR sets bits 16 and 18 to 1 
(other bits to 0). This corresponds to the value of N used to select the size of the 
buffer as 2N+1 = 64 bytes using BK0. For example, if a buffer size of 128 is 
desired using BK0, the upper 16 bits of AMR are set to (0110)b = 0x0006.  
 
If assembly code is used for the circular buffer, as execution returns to a calling 
C function, AMR needs to be reinitialized to the default linear mode. Hence the 
pointer’s address must be saved. 
 

TMS320C6x INSTRUCTION SET : 

Assembly Code Format 
 
An assembly code format is represented by the field 
  Label || [ ] Instruction Unit Operands ;comments 
A label, if present, represents a specific address or memory location that 
contains an instruction or data. The label must be in the first column. The 
parallel bars (||) are there if the instruction is being executed in parallel with the 
previous instruction. The subsequent field is optional to make the associated 
instruction conditional. Five of the registers—A1, A2, B0, B1, and B2—are 
available to use as conditional registers. For example, [A2] specifies that the 
associated instruction executes if A2 is not zero. On the other hand, with [!A2], 
the associated instruction executes if A2 is zero. All C6x instructions can be 
made conditional with the registers A1, A2, B0, B1, and B2 by determining 
when the conditional register is zero.  
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The instruction field can be either an assembler directive or a mnemonic. An 
assembler directive is a command for the assembler. For example, 
.word value 
reserves 32 bits in memory and fill with the specified value. A mnemonic is an 
actual instruction that executes at run time. The instruction (mnemonic or 
assembler directive) cannot start in column 1. The Unit field, which can be one 
of the eight CPU units, is optional. Comments starting in column 1 can begin 
with either an asterisk or a semicolon, whereas comments starting in any other 
columns must begin with a semicolon. Code for the floating-point processors 
C3x/C4x is not compatible with code for the fixed-point processors C1x, C2x, 
and C5x/C54x. However, the code for the fixed-point processors C62x is 
compatible with the code for the floating-point C67x. 
 
C62x code is actually a subset of C67x code. Additional instructions to handle 
double-precision and floating-point operations are available only on the C67x 
processor. Also, some additional instructions are available only on the fixed 
point C64x processor. Several code segments are presented to illustrate the C6x 
instruction set. Assembly code for the C6x processors is very similar to 
C3x/C4x code. Single-task types of instructions available for the C6x make it 
easier to program than either the previous generation of fixed- or floating-point 
processors.  
 
This contributes to an efficient 
compiler. Additional instructions available on the C64x (but not on the C62x) 
resemble the multitask types of instructions for C3x/C4x processors, 
AppendixA contains a list of the instructions for the C62x/C67x processors. 
 

Types of Instructions : 
 
The following illustrates some of the syntax of assembly code. It is optional to 
specify the eight functional units, although this can be useful during debugging 
and for code efficiency and optimization. 
 
1. Add/Subtract/Multiply 
(a) The instruction 
ADD .L1 A3,A7,A7 ; add A3 + A7  A7 (accum in A7) 
adds the values in registers A3 and A7 and places the result in register 
A7. The unit .L1 is optional. If the destination or result is in B7, the unit 
would be .L2.    
(b) The instruction 
SUB .S1 A1,1,A1 ;subtract 1 from A1 
subtracts 1 from A1 to decrement it using the .S unit. 
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(c) The parallel instructions 
MPY .M2 A7,B7,B6 ; multiply 16 LSBs of A7, B7 Æ B6 
|| MPYH .M1 A7,B7,A6 ;multiply 16MSBs of A7, B7 ÆA6 
 
multiplies the lower or least significant 16 bits (LSBs) of both A7 and B7 and 
places the product in B6, in parallel (concurrently within the same 
execution packet) with a second instruction that multiplies the higher or most 
significant 16 bits (MSBs) of A7 and B7 and places the result in A6. 
In this fashion, two MAC operations can be executed within a single instruction 
cycle. This can be used to decompose a sum of products into two sets of sum of 
products: one set using the lower 16 bits to operate on the first, third, fifth, . . . 
number and another set using the higher 16 bits to operate on the second, fourth, 
sixth, . . . number. Note that the parallel 
symbol is not in column 1. 
 
2. Load/Store 
(a) The instruction 
LDH .D2 *B2++,B7 ;load (B2) Æ B7, increment B2 
|| LDH .D1 *A2++,A7 ;load (A2) Æ A7, increment A2 
loads into B7 the half-word (16 bits) whose address in memory is specified/ 
pointed to by B2.Then register B2 is incremented (postincremented) to point at 
the next higher memory address. In parallel is another indirect addressing mode 
instruction to load into A7 the content in memory whose address is specified by 
A2. Then A2 is incremented to point at the next higher memory address. 
The instruction LDW loads a 32-bit word. Two paths using .D1 and .D2 allow 
for the loading of data from memory to registers A and B using the instruction 
LDW.The double-word load floating-point instruction LDDW on the C6713 can 
simultaneously load two 32-bit registers into side A and two 32-bit registers into 
side B. 
(b) The instruction 
STW .D2 A1,*+A4[20] ;store A1Æ(A4) offset by 20 stores the 32-bit word A1 
in memory whose address is specified by A4 offset by 20 words (32 bits) or 80 
bytes. The address register A4 is preincremented with offset, but it is not 
modified (two plus signs are used if A4 is to be modified).  
3. Branch/Move.  
The following code segment illustrates branching and data 
transfer: 
Loop MVKL .S1 x,A4 ;move 16 LSBs of x address ÆA4 
MVKH .S1 x,A4 ;move 16 MSBs of x address ÆA4 
. 
SUB .S1 A1,1,A1 ;decrement A1 
[A1] B .S2 Loop ;branch to Loop if A1 # 0 
NOP 5 ;five no-operation instructions 
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STW .D1 A3,*A7 ;store A3 into (A7) 
The first instruction moves the lower 16 bits (LSBs) of address x into register 
A4.The second instruction moves the higher 16 bits (MSBs) of address x into 
A4, which now contains the full 32-bit address of x. One must use the 
instructions 
MVKL/MVKH in order to get a 32-bit constant into a register. Register A1 is 
used as a loop counter. After it is decremented with the SUB instruction, it is 
tested for a conditional branch. Execution branches to the label or address Loop 
if A1 is not zero. If A1 = 0, execution continues and data in register A3 are 
stored in memory whose address is specified (pointed) by A7. 
 
ASSEMBLER DIRECTIVES : 
 
An assembler directive is a message for the assembler (not the compiler) and is 
not an instruction. It is resolved during the assembling process and does not 
occupy memory space, as an instruction does. It does not produce executable 
code. Addresses of different sections can be specified with assembler directives. 
For example, the assembler directive .sect “my_buffer” defines a section of 
code or data named my_buffer. 
The directives .text and .data indicate a section for text and data, respectively. 
Other assembler directives, such as .ref and .def, are used for undefined and 
defined symbols, respectively.The assembler creates several sections indicated 
by directives such as .text for code and .bss for global and static variables. 
 
Other commonly used assembler directives are : 
 
1. .short: to initialize a 16-bit integer. 
2. .int: to initialize a 32-bit integer (also .word or .long).The compiler treats 
     a long data value as 40 bits, whereas the C6x assembler treats it as 32   bits. 
3. .float: to initialize a 32-bit IEEE single-precision constant. 
4. .double: to initialize a 64-bit IEEE double-precision constant. 
 
Initialized values are specified by using the assembler directives .byte, .short, 
or .int. Uninitialized variables are specified using the directive .usect, which 
creates an uninitialized section (like the .bss section), whereas the directive .sect 
creates an initialized section. For example, .usect “variable”, 128 designates 
an uninitialized section named variable with a section size of 128 in bytes. 
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LINEAR ASSEMBLY : 
 
An alternative to C, or assembly code, is linear assembly. An assembler 
optimizer (in lieu of a C compiler) is used in conjunction with a linear 
assembly-coded source program (with extension .sa) to create an assembly 
source program (with extension .asm) in much the same way that a C compiler 
optimizer is used in conjunction with a C-coded source program. The resulting 
assembly-coded program produced by the assembler optimizer is typically more 
efficient than one resulting from the C compiler optimizer. The assembly-coded 
program resulting from either a C-coded source program or a linear-assembly 
source program must be assembled to produce an object code. 
 
Linear assembly code programming provides a compromise between coding 
effort and coding efficiency.The assembler optimizer assigns the functional unit 
and register to use (optional to be specified by the user), finds instructions that 
can execute in parallel, and performs software pipelining for optimization  
Two programming examples at the end of this chapter illustrate a C program 
calling a linear assembly function. Parallel instructions are not valid in a linear 
assembly program. Specifying the functional unit is optional in a linear 
assembly program as well as in an assembly program. 
 
In recent years, the C compiler optimizer has become more and more efficient. 
Although C code is less efficient (speed performance) than assembly code, it 
typically involves less coding effort than assembly code, which can be hand 
optimized to achieve 100 percent efficiency but with much greater coding 
effort. It is interesting to note that the C6x assembly code syntax is not as 
complex as that of the C2x/C5x or the C3x family of processors. It is actually 
simpler to “program” the C6x in assembly.  
 
For example, the C3x instruction 
DBNZD AR4,LOOP 
decrements (due to the first D) a loop counter AR4 and branches (B) 
conditionally (if AR4 is nonzero) to the address specified by LOOP, with delay 
(due to the second D). The branch instruction with delay effectively allows the 
branch instruction to execute in a single cycle (due to pipelining). Such 
multitask instructions are not available on the C62x and C67x processors, 
although they were recently introduced on the C64x processor. In fact, C6x 
types of instructions are simpler. For example, separate instructions are 
available for decrementing a counter (with a SUB instruction) and 
branching.The simpler types of instructions are more amenable for a more 
efficient C compiler. However, although it is simpler to program in assembly 
code to perform a desired task, this does not imply or translate into an efficient 
assembly-coded program.  
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It can be relatively difficult to hand-optimize a program to yield a totally 
efficient (and meaningful) assembly-coded program. Linear assembly code is a 
cross between assembly and C. It uses the syntax of assembly code instructions 
such as ADD, SUB, and MPY, but with operands/registers as used in C. In 
some cases this provides a good compromise between C and assembly. 
 
Linear assembler directives include 
.cproc 
.endproc 
to specify a C-callable procedure or section of code to be optimized by the 
assembler optimizer.Another directive, .reg, is used to declare variables and use 
descriptive names for values that will be stored in registers. 
 
INTERRUPTS : 
 
An interrupt can be issued internally or externally. An interrupt stops the current 
CPU process so that it can perform a required task initiated by the interrupt. The 
program flow is redirected to an ISR. The source of the interrupt can be an 
ADC, a timer, and so on. On an interrupt, the conditions of the current process 
must be saved so that they can be restored after the interrupt task is performed. 
On interrupt, registers are saved and processing continues to an ISR. Then the 
registers are restored. 
 
There are 16 interrupt sources. They include two timer interrupts, four external 
interrupts, four McBSP interrupts, and four DMA interrupts.Twelve CPU 
interrupts (INT4–INT11) are available. An interrupt selector is used to choose 
among the 12 interrupts. 
 
Interrupt Control Registers : 
 
The interrupt control registers are as follows: 
1. CSR (control status register): contains the global interrupt enable (GIE) bit 
and other control/status bits 
2. IER (interrupt enable register): enables/disables individual interrupts 
3. IFR (interrupt flag register): displays the status of interrupts 
4. ISR (interrupt set register): sets pending interrupts 
5. ICR (interrupt clear register): clears pending interrupts 
6. ISTP (interrupt service table pointer): locates an ISR 
7. IRP (interrupt return pointer) 
8. NRP (nonmaskable interrupt return pointer) 
Interrupts are prioritized, with Reset having the highest priority. 
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The reset interrupt and nonmaskable interrupt (NMI) are external pins that have 
the first and second highest priority, respectively. The interrupt enable register 
(IER) is used to set a specific interrupt and can check if and which interrupt has 
occurred from the interrupt flag register (IFR). 
NMI is nonmaskable, along with Reset. NMI can be masked (disabled) by 
clearing the nonmaskable interrupt enable (NMIE) bit within CSR. It is set to 
zero only upon reset or upon a nonmaskable interrupt. If NMIE is set to zero, all 
interrupts INT4 through INT15 are disabled. 
 
The reset signal is an active-low signal used to halt the CPU, and the NMI 
signal alerts the CPU to a potential hardware problem.Twelve CPU interrupts 
with lower priorities are available, corresponding to the maskable signals INT4 
through INT15. The priorities of these interrupts are: INT4, INT5, . . . , INT15, 
with INT4 having the highest priority and INT15 the lowest priority. For an 
NMI to occur, the NMIE bit must be 1 (active high). 
 
 On reset (or after a previously set NMI), the NMIE bit is cleared to zero so that 
a reset interrupt may occur. To process a maskable interrupt, the GIE bit within 
the control status register (CSR) and the NMIE bit within the IER are set to 1. 
GIE is set to 1 with bit 0 of CSR set to 1, and NMIE is set to 1 with bit 1 of IER 
set to 1. Note that CSR can be ANDed with -2 (using 2’s complement, the LSB 
is 0, while all other bits are 1’s) to set the GIE bit to 0 and disable maskable 
interrupts globally. The interrupt enable (IE) bit corresponding to the desirable 
maskable interrupt is also set to 1.When the interrupt occurs, the corresponding 
IFR bit is set to 1 to show the interrupt status. 
Interrupt Service Table : 

Interrupt Offset 
RESET    000h 
NMI         020h 
Reserved  040h 
Reserved  060h 
INT4        080h 
INT5        0A0h 
INT6        0C0h 
INT7         0E0h 
INT8         100h 
INT9        120h 
INT10      140h 
INT11      160h 
INT12      180h 
INT13      1A0h 
INT14       1C0h 
INT15       1E0h 
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MULTICHANNEL BUFFERED SERIAL PORTS : 
 
Two McBSPs are available.They provide an interface to inexpensive (industry 
standard) external peripherals. McBSPs have features such as full-duplex 
communication, independent clocking and framing for receiving and 
transmitting, and direct interface to AC97 and IIS compliant devices.They allow 
several data sizes between 8 and 32 bits. 
 
 

 
 
Clocking and framing associated with the McBSPs for input and output 
are External data communication can occur while data are being moved 
internally. 
Figure 3,4shows an internal block diagram of a McBSP. The data transmit (DX) 
and data receive (DR) pins are used for data communication. Control 
information (clocking and frame synchronization) is through CLKX, CLKR, 
FSX, and FSR.The CPU or DMA controller reads data from the data receive 
register (DRR) and writes data to be transmitted to the data transmit register 
(DXR). The transmit shift register (XSR) shifts these data to DX.The receive 
shift register (RSR) copies the data received on DR to the receive buffer register 
(RBR). The data in RBR are then copied to DRR to be read by the CPU or the 
DMA controller.  
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Other registers—the serial port control register (SPCR), receive/transmit control 
register (RCR/XCR), receive/transmit channel enable register (RCER/XCER), 
pin control register (PCR), and sample rate generator register (SRGR)—support 
further data communication [7]. 
 
 The two McBSPs are used for input and output through the onboard codec. 
McBSP0 is used for control and McBSP1 for transmitting and receiving data. 
 
 

 

BLOCK DIGRAM OF  TMS320C67xx DSP STARTER  KIT AND  
SUPPORT  TOOLS : 

 
 

DSP TMS320C67XX STARTER KIT 
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BLOCK DIAGRAM OF  DSP TMS320C67XX STARTER KIT : 
 

 
Block diagram of TMS320C67XX DSP Starter Kit 

 
 
 

 
AIC23 CODEC 
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TMS320C67XX Digital Signal Processor : 
 
 The TMS320C6713 (C6713) is based on the VLIW architecture, which is 

very well suited for numerically intensive algorithms.  
 The internal program memory is structured so that a total of eight 

instructions can be fetched every cycle. 
  For example, with a clock rate of 225MHz, the C6713 is capable of 

fetching eight 32-bit instructions every 1/(225 MHz) or 4.44 ns.  
 Features of the C6713 include 264 kB of internal memory (8kB as L1P 

and L1D Cache and 256kB as L2 memory shared between program and 
data space), eight functional or execution units composed of six 
arithmetic-logic units (ALUs) and two multiplier units, a 32-bit address 
bus to address 4 GB (gigabytes), and two sets of 32-bit general-purpose 
registers.  

 The C67xx (such as the C6701, C6711, and C6713) belong to the family 
of the C6x floating-point processors, whereas the C62xx and C64xx 
belong to the family of the C6x fixed-point processors. The C6713 is 
capable of both fixed- and floatingpoint processing. 
 

CODE COMPOSER STUDIO : 
 
 CCS provides an IDE to incorporate the software tools. CCS includes 

tools for code generation, such as a C compiler, an assembler, and a 
linker.  

 It has graphical capabilities and supports real-time debugging. It provides 
an easy-to-use software tool to build and debug programs.  

 The C compiler compiles a C source program with extension .c to 
produce an assembly source file with extension.asm.The assembler 
assembles an.asm source file to produce a machine language object file 
with extension.obj. 

 The linker combines object files and object libraries as input to produce 
an executable file with extension.out. 

 
CCS Installation and Support : 
 
Use the USB cable to connect the DSK board to the USB port on the PC. Use 
the 5-V power supply included with the DSK package to connect to the +5-V 
power connector on the DSK to turn it on. Install CCS with the CD-ROM 
included withthe DSK, preferably using the c:\C6713 structure (in lieu of c:\ti 
as the default). The CCS icon should be on the desktop as “C6713DSK CCS” 
and is used to launch CCS.The code generation tools (C compiler, assembler, 
linker) are used with CCS version 2.x. 
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CCS provides useful documentations included with the DSK package on the 
following (see the Help icon): 
1. Code generation tools (compiler, assembler, linker, etc.) 
2. Tutorials on CCS, compiler, RTDX 
3. DSP instructions and registers 
4. Tools on RTDX, DSP/basic input/output system (DSP/BIOS), and so on. 
 
CCS installation 
1. myprojects: a folder supplied only for your projects. All the folders in 
the 
accompanying book CD should be placed within this subdirectory. 
2. bin: contains many utilities. 
3. docs: contains documentation and manuals. 
4. c6000\cgtools: contains code generation tools. 
5. c6000\RTDX: contains support files for real-time data transfer. 
6. c6000\bios: contains support files for DSP/BIOS. 
7. examples: contains examples included with CCS. 
8. tutorial: contains additional examples supplied with CCS. 
 
Useful Types of Files : 
 
You will be working with a number of files with different extensions. They 
include: 
1. file.pjt: to create and build a project named file 
2. file.c: C source program 
3. file.asm: assembly source program created by the user, by the C compiler, 
or by the linear optimizer 
4. file.sa: linear assembly source program.The linear optimizer uses file.sa 
as input to produce an assembly program file.asm 
5. file.h: header support file 
6. file.lib: library file, such as the run-time support library file 
rts6700.lib 
7. file.cmd: linker command file that maps sections to memory 
8. file.obj: object file created by the assembler 
9. file.out: executable file created by the linker to be loaded and run on the 
C6713 processor 
10. file.cdb: configuration file when using DSP/BIOS 
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DSK Board : 
 
The DSK board includes 16MB (megabytes) of synchronous dynamic random 
access memory (SDRAM) and 256kB (kilobytes) of flash memory. Four 
connectorson the board provide input and output: MIC IN for microphone input, 
LINE IN for line input, LINE OUT for line output, and HEADPHONE for a 
headphone output (multiplexed with line output). The status of the four user dip 
switches on the DSK board can be read from a program and provides the user 
with a feedback control interface. 
 
DSK SUPPORT TOOLS : 
 
 To perform the experiments, the following tools are used: 
 
1. TI’s DSP starter kit (DSK). The DSK package includes: 
(a) Code Composer Studio (CCS), which provides the necessary software 
support tools. CCS provides an integrated development environment 
(IDE), bringing together the C compiler, assembler, linker, debugger, and 
so on. 
 
2 DSP Development System 
 
DSK Support Tools 3 
(b) A board, shown in Figure 1.1, that contains the TMS320C6713 (C6713) 
floating-point digital signal processor as well as a 32-bit stereo codec for 
input and output (I/O) support. 
 
(c) A universal synchronous bus (USB) cable that connects the DSK board 
to a PC. 
 
(d) A 5V power supply for the DSK board. 
2. An IBM-compatible PC.The DSK board connects to the USB port of the PC 
through the USB cable included with the DSK package. 
 
3. An oscilloscope, signal generator, and speakers. A signal/spectrum analyzer 
is optional. Shareware utilities are available that utilize the PC and a sound card 
to create a virtual instrument such as an oscilloscope, a function generator, or 
a spectrum analyzer. 
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CEC337  -  DSP ARCHITECTURE AND PROGRAMMING 
 
 
UNIT IV  IMPLEMENTATION OF DSP ALGORITHMS  
 
DSP Development system, On-chip, and On-board peripherals of C54xx and C67xx DSP 
development boards, Code Composer Studio (CCS) and support files, Implementation of 
Conventional FIR, IIR, and Adaptive filters in TMS320C54xx/TMS320C67xx DSP 
processors for real-time DSP applications, Implementation of FFT algorithm for frequency 
analysis in real-time. 

 

DSP DEVELOPMENT SYSTEM : 

INTRODUCTION 

Digital signal processors such as the TMS320C6x (C6x) family of processors are like fast 
special-purpose microprocessors with a specialized type of architecture and an instruction set 
appropriate for signal processing.  The C6x notation is used to designate a member of Texas 
Instruments’ (TI) TMS320C6000 family of digital signal processors. 
 
 The architecture of the C6x digital signal processor is very well suited for numerically 
intensive calculations. Based on a very-long-instruction-word (VLIW) architecture, the 
C6x is considered to be TI’s most powerful processor. Digital signal processors are used for 
a wide range of applications, from communications and controls to speech and image 
processing. The general-purpose digital signal processor is dominated by applications in 
communications (cellular). 
 
Applications embedded digital signal processors are dominated by consumer products. 
They are found in cellular phones, fax/modems, disk drives, radio, printers, hearing 
aids, MP3 players, high-definition television (HDTV), digital cameras, and so on. These 
processors have become the products of choice for a number of consumer applications, since 
they have become very cost-effective.They can handle different tasks, since they can be 
reprogrammed readily for a different application. DSP techniques have been very successful 
because of the development of low-cost software and hardware support. For example, 
modems and speech recognition can be less expensive using DSP techniques. 
 
DSP processors are concerned primarily with real-time signal processing. Realtime 
processing requires the processing to keep pace with some external event, whereas non-real-
time processing has no such timing constraint.The external event to keep pace with is usually 
the analog input.Whereas analog-based systems with discrete electronic components such as 
resistors can be more sensitive to temperature changes, DSP-based systems are less affected 
by environmental conditions. DSP processors enjoy the advantages of microprocessors. 
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They are easy to use, flexible, and economical.A number of books and articles address the 
importance of digital signal processors for a number of applications [1–22]. Various 
technologies have been used for real-time processing, from fiberoptics for very high 
frequency to DSPs very suitable for the audio-frequency range. Common applications using 
these processors have been for frequencies from 0 to 96kHz. Speech can be sampled at 8 
kHz (the rate at which samples are acquired), which implies that each value sampled is 
acquired at a rate of 1/(8 kHz) or 0.125ms. A commonly used sample rate of a compact disk 
is 44.1kHz. 
  
Analog/digital (A/D)-based boards in the megahertz sampling rate range are currently 
available. The basic system consists of an analog-to-digital converter (ADC) to capture an 
input signal. The resulting digital representation of the captured signal is then processed by a 
digital signal processor such as the C6x and then output through a digital-to-analog converter 
(DAC). Also included within the basic system are a special input filter for anti-aliasing to 
eliminate erroneous signals and an output filter to smooth or reconstruct the processed output 
signal. 
 
DSK SUPPORT TOOLS 
 
Most of the work presented in this book involves the design of a program to implement a 
DSP application. To perform the experiments, the following tools are used: 
 
1. TI’s DSP starter kit (DSK). The DSK package includes: 
 
(a) Code Composer Studio (CCS), which provides the necessary software support tools. 
CCS provides an integrated development environment (IDE), bringing together the C 
compiler, assembler, linker, debugger, and so on. 
 
(b) A board, that contains the TMS320C6713 (C6713) floating-point digital signal 
processor as well as a 32-bit stereo codec for input and output (I/O) support. 
 
(c) A universal synchronous bus (USB) cable that connects the DSK board to a PC. 
 
(d) A 5V power supply for the DSK board. 
 
2. An IBM-compatible PC.The DSK board connects to the USB port of the PC through the 
USB cable included with the DSK package. 
 
3. An oscilloscope, signal generator, and speakers. A signal/spectrum analyzer is optional. 
Shareware utilities are available that utilize the PC and a sound card to create a virtual 
instrument such as an oscilloscope, a function generator, or a spectrum analyzer. 
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DSK Board 
 
The DSK package is powerful, yet relatively inexpensive ($395), with the necessary 
hardware and software support tools for real-time signal processing [23–43]. It is a complete 
DSP system.The DSK board, with an approximate size of 5X8 inches., includes the C6713 
floating-point digital signal processor and a 32-bit stereo codec TLV320AIC23 (AIC23) for 
input and output. 
 
The onboard codec AIC23 [37] uses a sigma–delta technology that provides ADC and 
DAC. It connects to a 12-MHz system clock.Variable sampling rates from 8 to 96 kHz can 
be set readily. A daughter card expansion is also provided on the DSK board. Two 80-pin 
connectors provide for external peripheral and external memory interfaces.Two project 
examples  illustrate the use of the external memory interface (EMIF) with light-emitting 
diodes (LEDs) and liquid-crystal displays (LCDs) for spectrum display. 
 
The DSK board includes 16MB (megabytes) of synchronous dynamic random access 
memory (SDRAM) and 256kB (kilobytes) of flash memory. Four connectors on the 
board provide input and output: MIC IN for microphone input, LINE IN for line 
input, LINE OUT for line output, and HEADPHONE for a headphone output 
(multiplexed with line output). The status of the four user dip switches on the DSK board 
can be read from a program and provides the user with a feedback control interface.The DSK 
operates at 225MHz.Also onboard the DSK are voltage regulators that provide 1.26 V for the 
C6713 core and 3.3 V for its memory and peripherals. 
 
TMS320C6713 Digital Signal Processor 
 
The TMS320C6713 (C6713) is based on the VLIW architecture, which is very well suited 
for numerically intensive algorithms. The internal program memory is structured so that a 
total of eight instructions can be fetched every cycle. For example, with a clock rate of 
225MHz, the C6713 is capable of fetching eight 32-bit instructions every 1/(225 MHz) or 
4.44 ns. 
 
Features of the C6713 include 264 kB of internal memory (8kB as L1P and L1D Cache and 
256kB as L2 memory shared between program and data space), eight functional or execution 
units composed of six arithmetic-logic units (ALUs) and two multiplier units, a 32-bit 
address bus to address 4 GB (gigabytes), and two sets of 32-bit general-purpose registers. 
 
The C67xx (such as the C6701, C6711, and C6713) belong to the family of the C6x floating-
point processors, whereas the C62xx and C64xx belong to the family of the C6x fixed-point 
processors. The C6713 is capable of both fixed- and floatingpoint processing. 
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ON-CHIP PERIPHERALS OF C54xx AND C67xx DSP DEVELOPMENT BOARDS : 
  

1. Timers and Counters. 
2. Serial communication interface 

i. UART  
ii. SPI 

iii. I2C 
3. ADC / DAC. 
4. DMA Controller. 
5. PWM. 
6. Watch dog Timers. 
7. Memory Interfaces. 

i. SRAM 
ii. DRAM 

iii. EEPROM 
iv. Flash memory 
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1.Timers and Counters. 
 
Digital signal processors typically have one or more on-chip timers that generate the 
hardware interrupt at periodic intervals. They can be used to time or count events, 
generate pulses or interrupt the CPU. The timers have two signaling modes, and can be 
clocked by an external clock or the CPU clock. By default they are clocked internally. The 
timer output can be configured as a timer output or a general-purpose output. When an 
internal clock drives the timer, the frequency on the timer input clock varies across the 
processor generations. the timer input frequency for different TI chips as a ratio of the CPU 
clocking rate. 
 
2.Serial communication interface. 
 
The SCI is constituted by three pins: Receive data (RXD), transmit data (TXD) and the 
SCI serial clock (SCLK). It provides a versatile connection to other units. Communication 
between the SCI and the DSP core is performed with memory mapped control and data 
registers. 
 
i. UART : UART stands for universal asynchronous receiver / transmitter and defines a 
protocol, or set of rules, for exchanging serial data between two devices. UART is very 
simple and only uses two wires between transmitter and receiver to transmit and receive in 
both directions.  
 
ii. SPI : Serial Peripheral Interface (SPI) is for synchronous serial communication, used 
primarily in embedded systems for short-distance wired communication between integrated 
circuits. 
 
iii. I2C : Inter-Integrated Circuit. It is a bus interface connection protocol incorporated into 
devices for serial communication. The I2C bus is a very popular and powerful bus used 
for communication between a master (or multiple masters) and a single or multiple slave 
devices. 
 
3.ADC / DAC. 
 
An analog-to-digital converter (ADC) is used to convert an analog signal such as voltage 
to a digital form so that it can be read and processed by a microcontroller. Most 
microcontrollers nowadays have built-in ADC converters. It is also possible to connect an 
external ADC converter to any type of microcontroller. 
An digital-to-analog (DAC)  is used correctly that converts digital signals into analog 
signals, ensuring accurate sound reproduction without affecting its properties. DSP optimizes 
the digital signal for the DAC's conversion process, resulting in the best possible output. 
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4.DMA Controller. 
 
Direct memory access (DMA) is the process of transferring data without the involvement of 
the processor itself. It is often used for transferring data to/from input/output devices. A 
separate DMA controller is required to handle the transfer. The controller notifies the DSP 
processor that it is ready for a transfer. 
 
5.PWM. 
 
The Pulse-width modulator (PWM) feature is very common in embedded systems. 
It provides a way to generate a pulse periodic waveform for motor control or can act as a 
digital-to-analog converter with some external components. 
 
PWM method is used to reduce the harmonic content in the output voltage applied to 
induction motor. The pulses were generated using Texas Instruments TMS 320F28335 DSP 
controller and that triggers the inverter. Results of input and output of the inverter were 
captured using Digital Storage Oscilloscope. 
 
6.Watch dog Timers. 
 
A watchdog timer (WDT) is a timer that monitors microcontroller (MCU) programs to see 
if they are out of control or have stopped operating. It acts as a “watchdog” watching over 
MCU operation. A microcontroller (MCU) is a compact processor for controlling electronic 
devices. 
 
7.Memory Interfaces. 
 
i.SRAM : Static random-access memory (static RAM or SRAM) is a type of random-
access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is 
volatile memory; data is lost when power is removed. 

 
ii.DRAM : DRAM (dynamic random access memory) is a type of semiconductor memory 
that is typically used for the data or program code needed by a computer processor to 
function. DRAM is a common type of random access memory (RAM) that is used in PCs, 
workstations and servers. 
 
iii.EEPROM : EEPROM is an acronym that stands for Electrically Erasable Programmable 
Read-Only Memory. It denotes a type of rewritable storage chip or memory package that can 
continue to hold its stored information even without power. This is known as non-volatile 
memory. By using UV ultraviolet rays can erase the data. 
 
iv.Flash memory : Flash memory is a long-life and non-volatile storage chip that is widely 
used in embedded systems. It can keep stored data and information even when the power is 
off. It can be electrically erased and reprogrammed.  
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ON-BOARD PERIPHERALS OF C54xx AND C67xx DSP DEVELOPMENT 
BOARDS : 
 

1. JTAG Interface. 
2. Power supply Unit. 
3. Clock generator. 
4. Memory unit. 
5. Expansion headers . 
6. GPIO. 
7. LED & Push buttons. 

 
 
1.JTAG Interface : 
 
JTAG (named after the Joint Test Action Group which codified it) is an industry standard 
for verifying designs and testing printed circuit boards after manufacture. JTAG implements 
standards for on-chip instrumentation in electronic design automation (EDA) as a 
complementary tool to digital simulation. 
 
JTAG/boundary-scan (IEEE Std 1149.1) is an electronic four port serial JTAG interface that 
allows access to the special embedded logic on a great many of today's ICs (chips) . 
 
2.Power supply Unit : 
 
A 5V power supply for the DSK board. 
 
3.Clock generator : 
 
A clock signal generator is a circuit that produces a timing signal for use in synchronizing a 
system's operation. At its most basic level, a clock generator consists of a resonant circuit 
and an amplifier. A clock signal is produced by an electronic oscillator called a clock 
generator. The most common clock signal is in the form of a square wave with a 50% duty 
cycle. A simple technique for on-chip generation of a primary clock signal would be to use a 
ring oscillator  Such a clock circuit has been used in low-end microprocessor chips. Simple 
on-chip clock generation circuit using a ring oscillator. 
 
A free-running ring oscillator is used as internal clock and the output clock is generated 
using two counters. The clock generator is described in synthesisable VHDL-code and can 
therefore easily be made from standard cells found in any commercial standard CMOS cell 
library. 
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4.Memory unit : 
 
They have various RAM and ROM configurations, a 16 bit I/O bus, and serial ports. The 
mid-range processor operates between 27-50 Mhz, with 16-32 bit floating point operations 
and 16-24 bit fixed point operations. A mid-range processor typically has around 32-40 bit 
registers. 
 
5.Expansion headers: 
 
An expansion header is a collection of expansion connectors placed on the development 
board. The pins from the connectors lead out the processor pins outside and can be identified 
by a label on the board. There can be multiple expansion headers on a single board. 
 

         
 
6.GPIO : 
 
GPIO stands for General Purpose Input/Output. It's a standard interface used to connect 
microcontrollers to other electronic devices. For example, it can be used with sensors, 
diodes, displays, and System-on-Chip modules. 
 
7.LED & Push buttons : 
 
LED stands for light emitting diode. LED lighting products produce light up to 90% more 
efficiently than incandescent light bulbs. How do they work? An electrical current passes 
through a microchip, which illuminates the tiny light sources we call LEDs and the result is 
visible light. 
 
A push-button (also spelled pushbutton) or simply button is a simple switch mechanism to 
control some aspect of a machine or a process. Buttons are typically made out of hard 
material, usually plastic or metal. 
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CODE COMPOSER STUDIO (CCS)  AND SUPPORT FILES : 
 
CODE COMPOSER STUDIO (CCS)  : 
 
CCS provides an IDE to incorporate the software tools. CCS includes tools for code 
generation, such as a C compiler, an assembler, and a linker. It has graphical capabilities 
and supports real-time debugging. It provides an easy-to-use software tool to build and 
debug programs. 
 
The C compiler compiles a C source program with extension .c to produce an assembly 
source file with extension.asm.The assembler assembles an.asm source file to produce a 
machine language object file with extension.obj.The linker combines object files and 
object libraries as input to produce an executable file with extension.out. 
 
 This executable file represents a linked common object file format (COFF), popular in 
Unix-based systems and adopted by several makers of digital signal processors [25]. This 
executable file can be loaded and run directly on the C6713 processor. the linear assembly 
source file with extension .sa, which is a cross between C and assembly code. A linear 
optimizer optimizes this source file to create an assembly file with extension .asm (similar to 
the task of the C compiler). 
 
To create an application project, one can “add” the appropriate files to theproject. 
Compiler/linker options can readily be specified. A number of debuggingfeatures are 
available, including setting breakpoints and watching variables; viewing memory, registers, 
and mixed C and assembly code; graphing results; and monitoring execution time. One can 
step through a program in different ways (step into, over, or out). 
 
Real-time analysis can be performed using real-time data exchange (RTDX).RTDX allows 
for data exchange between the host PC and the target DSK, as well as analysis in real time 
without stopping the target. Key statistics and performance can be monitored in real time. 
Through the joint team action group (JTAG), communication with on-chip emulation 
support occurs to control and monitor program execution. The C6713 DSK board includes a 
JTAG interface through the USB port. 
 
CCS Installation and Support 
 
Use the USB cable to connect the DSK board to the USB port on the PC. Use the 5-V power 
supply included with the DSK package to connect to the +5-V power connector on the DSK 
to turn it on. Install CCS with the CD-ROM included with the DSK, preferably using the 
c:\C6713 structure (in lieu of c:\ti as the default). 
 
The CCS icon should be on the desktop as “C6713DSK CCS” and is used to launch 
CCS.The code generation tools (C compiler, assembler, linker) are used with CCS version 
2.x. 
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CCS provides useful documentations included with the DSK package on the following (see 
the Help icon): 
 
1. Code generation tools (compiler, assembler, linker, etc.) 
2. Tutorials on CCS, compiler, RTDX 
3. DSP instructions and registers 
4. Tools on RTDX, DSP/basic input/output system (DSP/BIOS), and so on. 
 
An extensive amount of support material (pdf files) is included with CCS.There are also 
examples included with CCS within the folder c:\C6713\examples. They illustrate the board 
and chip support library files, DSP/BIOS, and so on. CCS Version 2.x was used to build and 
test the examples included in this book.A number of files included in the following 
subfolders/directories within c:\C6713 (suggested structure during CCS installation) can be 
very useful: 
 
1. myprojects: a folder supplied only for your projects. All the folders in the 
accompanying book CD should be placed within this subdirectory. 
2. bin: contains many utilities. 
3. docs: contains documentation and manuals. 
4. c6000\cgtools: contains code generation tools. 
5. c6000\RTDX: contains support files for real-time data transfer. 
6. c6000\bios: contains support files for DSP/BIOS. 
7. examples: contains examples included with CCS. 
8. tutorial: contains additional examples supplied with CCS. 
 
Useful Types of Files : 
 
You will be working with a number of files with different extensions. They include: 
 
1. file.pjt: to create and build a project named file 
2. file.c: C source program 
3. file.asm: assembly source program created by the user, by the C compiler,or by the linear 
optimizer 
4. file.sa: linear assembly source program.The linear optimizer uses file.sa as input to 
produce an assembly program file.asm 
5. file.h: header support file 
6. file.lib: library file, such as the run-time support library file rts6700.lib 
7. file.cmd: linker command file that maps sections to memory 
8. file.obj: object file created by the assembler 
9. file.out: executable file created by the linker to be loaded and run on the C6713 processor 
10. file.cdb: configuration file when using DSP/BIOS 
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SUPPORT FILES :  
 
The following support files located in the folder support (except the library files) 
are used for most of the examples and projects: 
 
1. C6713dskinit.c: contains functions to initialize the DSK, the codec, the serial ports, and 
for I/O. It is not included with CCS. 
 
2. C6713dskinit.h: header file with function prototypes. Features such as those used to 
select the mic input in lieu of line input (by default), input gain, and so on are obtained from 
this header file (modified from a similar file included with CCS). 
 
3. C6713dsk.cmd: sample linker command file. This generic file can be changed when 
using external memory in lieu of internal memory. 
 
4. Vectors_intr.asm: a modified version of a vector file included with CCS to handle 
interrupts. Twelve interrupts, INT4 through INT15, are available, and INT11 is selected 
within this vector file.They are used for interrupt-driven programs. 
 
5. Vectors_poll.asm: vector file for programs using polling. 
 
6. rts6700.lib,dsk6713bsl.lib,csl6713.lib: run-time, board, and chip support library files, 
respectively. These files are included with CCS and are located in C6000\cgtools\lib, 
C6000\dsk6713\lib, and c6000\bios\lib, respectively. 
 
On-Chip Peripherals in C54x DSP  Processor : 
 
 The following on-chip peripherals are available on C54x devices:  
 

1. General-purpose I/O pins: XF and BIO  
2. Timer 
3. Clock generator  
4. Host port interface (HPI)  

i. 8-bit standard 
ii. 8-bit enhanced  

iii. 16-bit enhanced 
     5. Synchronous serial port  
     6. Buffered serial port (BSP)  
     7. Multichannel buffered serial port (McBSP)  
     8. Time-division multiplexed (TDM) serial port  
     9. Software-programmable wait-state generator  
    10. Programmable bank-switch 
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1. General-Purpose I/O : 
 
The C54x DSP offers general-purpose I/O through two dedicated pins that are software 
controlled. The two dedicated pins are the branch control input pin (BIO) and the external 
flag output pin (XF).  
 
i. Branch Control Input Pin (BIO) : BIO can be used to monitor the status of peripheral 
devices. It is especially useful as an alternative to using an interrupt when time-critical loops 
must not be disturbed. A branch can be conditionally executed dependent upon the state of 
the BIO input. Of the instructions that use BIO, the execute conditionally (XC) instruction 
samples the condition of BIO during the decode phase of the pipeline; all other conditional 
instructions (branch, call, and return) sample BIO during the read phase of the pipeline.  
 
ii. External Flag Output Pin (XF) : XF can be used to signal external devices. The XF pin 
is controlled using software. It is driven high by setting the XF bit (in ST1) and is driven low 
by clearing the XF bit. The set status register bit (SSBX) and reset status register bit (RSBX) 
instructions can be used to set and clear XF, respectively. XF is also set high at device reset. 
Figure 8–1 shows the relationship between the time the SSBX or RSBX instruction is 
fetched and the time the XF pin is set or reset (refer to the TMS320C54x DSP data sheet for 
timing specifications). The XF timing shown is for a sequence of single-cycle instructions. 
Actual timing can vary with different instruction sequences. 
 
2. Timer :  
 
The on-chip timer is a software-programmable timer that consists of three registers and can 
be used to periodically generate interrupts. The timer resolution is the CPU clock rate of the 
processor.The high dynamic range of the timer is achieved with a 16-bit counter with a 4-bit 
prescaler. The C5402 and the C5420 have two on-chip timers. 
 
3. Clock Generator :  
 
The clock generator allows system designers to select the clock source. The sources that 
drive the clock generator are:  
 
 A crystal resonator with the internal oscillator circuit. The crystal resonator circuit is 

connected across the X1 and X2/CLKIN pins of the C54x DSP. The CLKMD pins 
must be configured to enable the internal oscillator.  

 An external clock. The external clock source is directly connected to the X2/CLKIN 
pin, and X1 is left unconnected.  

 
The clock generator on the C54x devices consists of an internal oscillator and a phase-locked 
loop (PLL) circuit. Currently, there are two different types of PLL circuits on C54x devices. 
Some devices have hardware-configurable PLL circuits while others have software-
programmable PLL circuit. 
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4.Host Port Interface :  

 
The standard host port interface (HPI) is available on the C542, C545, C548, and C549 
devices. The HPI is an 8-bit parallel port that interfaces a host device or host processor to the 
C54x DSP.  
 
Information is exchanged between the C54x DSP and the host device through on-chip C54x 
DSP memory that is accessible by both the host and the C54x DSP. Enhanced host port 
interfaces are available on the C5402, C5410 (HPI-8), and C5420 (HPI-16) devices. This 
chapter does not describe these enhanced HPIs 
 
The HPI interfaces to the host device as a peripheral, with the host device as master of the 
interface, facilitating ease of access by the host. The host device communicates with the HPI 
through dedicated address and data registers, to which the C54x DSP does not have direct 
access, and the HPI control register, using the external data and interface control signals 
Both the host device and the C54x DSP have access to the HPI control register. 
 
5.Synchronous serial port : 
 
In all C54x DSP serial ports, both receive and transmit operations are doublebuffered, thus 
allowing a continuous communications stream with either 8-bit or 16-bit data packets. The 
continuous mode provides operation that, once initiated, requires no further frame 
synchronization pulses (FSR and FSX) when transmitting at maximum packet frequency.  
 
The serial ports are fully static and thus will function at arbitrarily low clocking frequencies. 
The maximum operating frequency for the standard serial port of one-fourth of CLKOUT 
(10 Mbit/s at 25 ns, 12.5 Mbit/s at 20 ns) is achieved when using internal serial port clocks. 
The maximum operating frequency for the BSP is CLKOUT. When the serial ports are in 
reset, the device may be configured to turn off the internal serial port clocks, allowing the 
device to run in a lower power mode of operation. 
 
6.Buffered Serial Port (BSP) Interface :  
 
The buffered serial port (BSP) is made up of a full-duplex, double-buffered serial port 
interface, which functions in a similar manner to the C54x DSP standard serial port, and an 
autobuffering unit (ABU)  
 
The serial port section of the BSP is an enhanced version of the C54x DSP standard serial 
port. The ABU is an additional section of logic which allows the serial port section to 
read/write directly to C54x DSP internal memory independent of the CPU. This results in a 
minimum overhead for serial port transfers and faster data rates. 
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7.Time-Division Multiplexed (TDM) Serial Port Interface :  
 
 The time-division multiplexed (TDM) serial port allows the C54x DSP to communicate 
serially with up to seven other devices. The TDM port, therefore, provides a simple and 
efficient interface for multiprocessing applications. By means of the TDM bit in the TDM 
serial port control register (TSPC), the port can be configured in multiprocessing mode 
(TDM = 1) or stand-alone mode (TDM = 0).  
 
When in stand-alone mode, the port operates as described in section 9.2. When in 
multiprocessing mode, the port operates as described in this section. The port can be shut 
down for low power consumption via the XRST and RRST bits, 
 
8.Wait-State Generator : 
 
The software-programmable wait-state generator can extend external bus cycles by up to 
seven machine cycles (14 machine cycles on C5402, C5409, C5410, and C5420 devices), 
providing a convenient means to interface the C54x DSP to slower external devices. Devices 
that require more than seven wait states can be interfaced using the hardware READY line.  
 
When all external accesses are configured for zero wait states, the internal clocks to the wait-
state generator are shut off. Shutting off these paths from the internal clocks allows the 
device to run with lower power consumption. The software-programmable wait-state 
generator is controlled by the 16-bit software wait-state register (SWWSR), which is 
memory-mapped to address 0028h in data space. 
 
9.Bank-Switching Logic :  
 
 Programmable bank-switching logic allows the C54x DSP to switch between external 
memory banks without requiring external wait states for memories that need several cycles 
to turn off. The bank-switching logic automatically inserts one cycle when accesses cross 
memory-bank boundaries inside program or data space. 
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UNIT – II 
 

BLOCK DIAGRAM OF TMS320C54XX DSP STARTER KIT :    
 
Depicts the basic block diagram of the ’C50. It shows the interconnections, which include 
the host interface, analog interface, and emulation interface. PC communications are via the 
RS-232 port on the DSK board. The 32K bytes of PROM contain the kernel program for 
boot loading. All pins of the ’C50 are connected to the external I/O interfaces. The external 
I/O interfaces include four 24-pin headers, a 4-pin header, and a 14-pin XDS510 header. The 
TLC32040 AIC interfaces to the ’C50 serial port. Two RCA connectors provide analog input 
and output on the board. 
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  Example 4.10:    FIR  Implementation Using Two Different Methods 
( fi r2ways )   

 Figure  4.34  shows a listing of the program  fi r2ways.c , which implements an FIR 
fi lter using two alternative methods for convolving and updating the delay samples. 
This example extends  Example 4.3 , in which the fi rst method (method A) is used. 
In this fi rst method, using two for loops, the delay samples are stored in the  N  -
 element array  dly  with the newest sample at the beginning of the buffer  dly[0]  
and the oldest sample at the end of the buffer  dly[N - 1] . The convolution starts 
with the newest sample and the fi rst fi lter coeffi cient using  

      y n h x n h x n h N x n N( ) ( ) ( ) ( ) ( ) ( ) ( ( ))= + − + + − − −0 1 1 1 1�   

 In a second for loop, each sample value in array  dly  is shuffl ed such that, for 
example, the sample value  dly[i]  is shifted to become  dly[i+1] . 

 The second method (method B) uses pointers to implement a circular buffer in 
array  dly . In this case, the samples stored in the array are not shuffl ed or moved. 
Method B performs the convolution using one for loop. 

 Build and run this project as   fi r2ways  .   Verify that an FIR bandpass fi lter centered 
at 1   kHz is implemented. Change the method used, by editing the line in program 
 fi r2ways.c  that reads

 #defi ne method  ‘ A ’  

and verify that the resulting fi lter characteristic is the same as before.  

  Example 4.11:   Voice Scrambling Using Filtering and Modulation 
( scrambler ) 

 This example illustrates a voice scrambling/descrambling scheme. The approach 
makes use of basic algorithms for fi ltering and modulation. Modulation was intro-
duced in the AM example in Chapter  2 . 

 With voice as input, the resulting output is scrambled voice. The original descram-
bled voice is recovered when the output of the DSK is used as the input to a second 
DSK running the same program. 

 The scrambling method used is commonly referred to as frequency inversion. It 
takes an audio range, in this case 300   Hz to 3   kHz, and  “ folds ”  it about a 3.3 - kHz 
carrier signal. The frequency inversion is achieved by multiplying (modulating) the 
audio input by a carrier signal, causing a shift in the frequency spectrum with upper 
and lower sidebands. In the lower sideband that represents the audible speech range, 
the low tones are high tones, and vice versa. 

 Figure  4.35  is a block diagram of the scrambling scheme. At point A we have an 
input signal, bandlimited to 3   kHz. At point B we have a double - sideband signal 
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    FIGURE 4.35.     Block diagram of scrambler system.  

with suppressed carrier. At point C the upper sideband and the section of the lower 
sideband between 3 and 3.3   kHz are fi ltered out. The scheme is attractive because 
of its simplicity. Only simple DSP algorithms — namely, fi ltering, sine wave genera-
tion, and amplitude modulation — are required for its implementation.   

 Figure  4.36  shows a listing of program  scrambler.c , which operates at a 
sampling rate,  fs , of 16   kHz. The input signal is fi rst lowpass fi ltered using an FIR 
fi lter with 65 coeffi cients,  h , defi ned in the fi le  lp3k64.cof . The fi ltering algorithm 
used is identical to that used in, for example, program  fi r.c . The fi lter delay line is 
implemented using array  x1  and the output is assigned to variable  yn1 . The fi lter 
output (at point A in Figure  4.36 ) is multiplied (modulated) by a 3.3 - kHz sinusoid 
stored as 160 samples (exactly 33 cycles) in array  sine160  (fi le  sine160.h ) . Finally, 
the modulated signal (at point B) is lowpass fi ltered again, using the same set of 
fi lter coeffi cients  h  ( lp3k64.cof ) but a different fi lter delay line implemented using 
array  x2  and the output variable  yn2 . The output is a scrambled signal (at point C). 
Using this scrambled signal as the input to a second DSK running the same algo-
rithm, the original descrambled input is recovered as the output of the second 
DSK.   

 Build and run this project as   scrambler  . First, test the program using a 2 - kHz 
sine wave as input. The resulting output is a lower sideband signal at 1.3   kHz. The 
upper sideband signal at 5.3   kHz is fi ltered out by the second lowpass fi lter. By 
varying the frequency of the sinusoidal input, you should be able to verify that input 
frequencies in the range 300 – 3000   Hz appear as output frequencies in the inverted 
range 3000 to 300   Hz. 

 A second DSK running the same program can be used to recover the original 
signal (simulating the receiving end). Use the output of the fi rst DSK as the input 
to the second DSK. 

 Change the input source used by the program from LINE IN to MIC IN and test 
the scrambler and descrambler using speech from a microphone as the input. Run 
exactly the same program on each DSK, that is, including the line

 Uint16 inputsource=DSK6713_AIC23_INPUT_MIC 

and connect LINE OUT on the fi rst DSK (scrambler) to MIC IN on the second 
DSK (descrambler). 
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 Interception of the speech signal could be made more diffi cult by changing the 
modulation frequency dynamically and by including (or omitting) the carrier fre-
quency according to a predefi ned sequence: for example, a code for no modulation, 
another for modulating at frequency  fc1 , and a third code for modulating at fre-
quency  fc2 .   

 This project was fi rst implemented using the TMS320C25  [50]  and also the 
TMS320C31 DSK.  

//scrambler.c

#include "DSK6713_AIC23.h"           // codec support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ;  //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include "sine160.h"
#include "lp3k64.cof"                //filter coefficient file
float yn1, yn2;                      //filter outputs
float x1[N],x2[N];                   //filter delay lines
int index = 0;

interrupt void c_int11()
{
 short i;
                                     // first filter input
 x1[0]=(float)(input_left_sample()); //get input into delay line
 yn1 = 0.0;                          //initialise filter output
 for (i=0 ; i<N ; i++) yn1 += h[i]*x1[i];
 for (i=(N-1) ; i>0 ; i--) x1[i] = x1[i-1];
                                     // next mix with 3300Hz
 yn1 *= sine160[index++];
 if (index >= NSINE) index = 0;
                                     // now filter again
 x2[0] = yn1;                        //get input into delay line
 yn2 = 0.0;                          //initialise filter output
 for (i=0 ; i<N ; i++) yn2 += h[i]*x2[i];
 for (i=(N-1) ; i>0 ; i--) x2[i] = x2[i-1];
 output_left_sample((short)(yn2));   //output to codec
 return;
}

void main()
{
 comm_intr();                        //initialise McBSP, AD535
 while(1);                           //infinite loop
}

    FIGURE 4.36.     Scrambler program  scrambler.c .  
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FIGURE 6.43.     Code Composer window during execution of program  fastconvdemo.c .  

Example 6.13: Graphic Equalizer ( graphicEQ)

 Figure  6.45  shows a listing of the program  graphicEQ.c , which implements a three -
 band graphic equalizer. TI ’ s fl oating - point complex radix - 2 FFT and IFFT support 
functions are used again in this project (see also Examples  6.5  and  6.6 ). The coeffi -
cient fi le  graphicEQcoeff.h  contains three sets of coeffi cients: lowpass at 1.3   kHz, 
bandpass between 1.3 and 2.6   kHz, and highpass at 2.6   kHz, designed with MAT-
LAB ’ s function  fir1 . Both the input samples and the three sets of coeffi cients are 
transformed into the frequency domain. The fi ltering is performed in the frequency 
domain based on the overlap - add scheme used in Examples  6.9 – 6.12   [15, 16]   . Note 
that an alternative arrangement to the triple buffering used in those examples has 
been employed.   

 An array of  PTS / 2  fl oating - point values,  iobuffer , is used for both input and 
output. New input samples replace previously computed output samples as they are 
written to the DAC. Once iobuffer  has been fi lled with  PTS / 2  new input samples, 
these are copied to an intermediate buffer (array samples ) and replaced by  PTS / 2
output samples. Build this project as graphicEQ  (use the optimization level  - o1). 
Test the project using music or wideband noise as an input. 
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      FIGURE 6.45.     Equalizer program using TI ’ s fl oating - point FFT support functions 
( graphicEQ.c ).    

//graphicEQ.c Graphic Equalizer using TI floating-point FFT functions

#include "DSK6713_AIC23.h"  //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  //set sampling rate
#include <math.h>
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select mic in
#include "GraphicEQcoeff.h"       //time-domain FIR coefficients
#define PI 3.14159265358979
#define PTS 256                   //number of points for FFT
//#define SQRT_PTS 16
#define RADIX 2
#define DELTA (2*PI)/PTS
typedef struct Complex_tag {float real,imag;} COMPLEX;
#pragma DATA_ALIGN(W,sizeof(COMPLEX))
#pragma DATA_ALIGN(samples,sizeof(COMPLEX))
#pragma DATA_ALIGN(h,sizeof(COMPLEX))
COMPLEX W[PTS/RADIX] ;      //twiddle array
COMPLEX samples[PTS];
COMPLEX h[PTS];
COMPLEX bass[PTS], mid[PTS], treble[PTS];
short buffercount = 0;            //buffer count for iobuffer samples
float iobuffer[PTS/2];            //primary input/output buffer
float overlap[PTS/2];      //intermediate result buffer
short i;                          //index variable
short flag = 0;                   //set to indicate iobuffer full
float a, b;                       //variables for complex multiply
short NUMCOEFFS = sizeof(lpcoeff)/sizeof(float);
short iTwid[PTS/2] ;
float bass_gain = 1.0;            //initial gain values
float mid_gain = 0.0;             //change with GraphicEQ.gel
float treble_gain = 1.0;

interrupt void c_int11(void)      //ISR
{
 output_left_sample((short)(iobuffer[buffercount]));
 iobuffer[buffercount++] = (float)((short)input_left_sample());
 if (buffercount >= PTS/2)        //for overlap-add method iobuffer
  {                               //is half size of FFT used
   buffercount = 0;
   flag = 1;
  }
}

main()
{
 digitrev_index(iTwid, PTS/RADIX, RADIX);
 for( i = 0; i < PTS/RADIX; i++ )
  {
   W[i].real = cos(DELTA*i);
   W[i].imag = sin(DELTA*i);
  }
 bitrev(W, iTwid, PTS/RADIX);     //bit reverse W

 for (i=0 ; i<PTS ; i++)
  {
   bass[i].real = 0.0;
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   bass[i].imag = 0.0;
   mid[i].real = 0.0;
   mid[i].imag = 0.0;
   treble[i].real = 0.0;
   treble[i].imag = 0.0;
  }
 for (i=0; i<NUMCOEFFS; i++)      //same # of coeff for each filter
  {
   bass[i].real = lpcoeff[i];     //lowpass coeff
   mid[i].real =  bpcoeff[i];     //bandpass coeff
   treble[i].real = hpcoeff[i];   //highpass coef
  }

 cfftr2_dit(bass,W,PTS);          //transform each band
 cfftr2_dit(mid,W,PTS);     //into frequency domain
 cfftr2_dit(treble,W,PTS);

 comm_intr();                     //initialise DSK, codec, McBSP
 while(1)         //frame processing infinite loop
  {
   while (flag == 0);             //wait for iobuffer full
          flag = 0;
   for (i=0 ; i<PTS/2 ; i++)      //iobuffer into samples buffer
    {
     samples[i].real = iobuffer[i];
     iobuffer[i] = overlap[i];    //previously processed output
    }         //to iobuffer
   for (i=0 ; i<PTS/2 ; i++)
    {                             //upper-half samples to overlap
     overlap[i] = samples[i+PTS/2].real;
     samples[i+PTS/2].real = 0.0; //zero-pad input from iobuffer
    }
   for (i=0 ; i<PTS ; i++)
     samples[i].imag = 0.0;       //init samples buffer

   cfftr2_dit(samples,W,PTS);

   for (i=0 ; i<PTS ; i++)        //construct freq domain filter
    {                             //sum of bass,mid,treble coeffs
    h[i].real = bass[i].real*bass_gain + mid[i].real*mid_gain
    + treble[i].real*treble_gain;
    h[i].imag = bass[i].imag*bass_gain + mid[i].imag*mid_gain
    + treble[i].imag*treble_gain;
    }
   for (i=0; i<PTS; i++)          //frequency-domain representation
    {                             //complex multiply samples by h
     a = samples[i].real;
     b = samples[i].imag;
     samples[i].real = h[i].real*a - h[i].imag*b;
     samples[i].imag = h[i].real*b + h[i].imag*a;
    }

   icfftr2_dif(samples,W,PTS);

   for (i=0 ; i<PTS ; i++)
      samples[i].real /= PTS;
   for (i=0 ; i<PTS/2 ; i++)      //add 1st half to overlap
      overlap[i] += samples[i].real;
  }                               //end of infinite loop
}                                 //end of main()

FIGURE 6.45. (Continued)
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      FIGURE 6.46.     Output spectrum of a graphic equalizer obtained with a signal analyzer: 
( a )  bass_gain    =    treble_gain    =   1,  mid_gain    =   0; ( b )  bass_gain    =    treble_gain    =   0, 
 mid_gain    =   1; ( c )  bass_gain    =    mid_gain    =   1,  treble_gain    =   0.  

(a)

(b)

(c)



which is the difference between the desired signal  d ( n ) and the adaptive fi lter ’ s 
output  y ( n ). The weights or coeffi cients  w k  ( n ) are adjusted such that a mean squared 
error function is minimized. This mean squared error function is  E [ e  2 ( n )], where  E  
represents the expected value. Since there are  k  weights or coeffi cients, a gradient 
of the mean squared error function is required. An estimate can be found instead 
using the gradient of  e  2 ( n ), yielding

    w n w n e n x n k k Nk k( ) ( ) ( ) ( ) , , . . . ,+ = + − = −1 2 0 1 1β     (7.3)  

which represents the LMS algorithm  [1 – 3] . Equation  (7.3)  provides a simple but 
powerful and effi cient means of updating the weights, or coeffi cients, without the 
need for averaging or differentiating, and will be used for implementing adaptive 
fi lters. The input to the adaptive fi lter is  x ( n ), and the rate of convergence and accu-
racy of the adaptation process (adaptive step size) is   b  . 

 For each specifi c time  n , each coeffi cient, or weight,  w k  ( n ) is updated or replaced 
by a new coeffi cient, based on  (7.3) , unless the error signal  e ( n ) is zero. After the 
fi lter ’ s output  y ( n ), the error signal  e ( n ) and each of the coeffi cients  w k  ( n ) are 
updated for a specifi c time  n , a new sample is acquired (from an ADC) and the 
adaptation process is repeated for a different time. Note that from  (7.3) , the weights 
are not updated when  e ( n ) becomes zero. 

 The linear adaptive combiner is one of the most useful adaptive fi lter structures 
and is an adjustable FIR fi lter. Whereas the coeffi cients of the frequency - selective 
FIR fi lter discussed in Chapter  4  are fi xed, the coeffi cients, or weights, of the adap-
tive FIR fi lter can be adjusted based on a changing environment such as an input 
signal. Adaptive IIR fi lters (not discussed here) can also be used. A major problem 
with an adaptive IIR fi lter is that its poles may be updated during the adaptation 
process to values outside the unit circle, making the fi lter unstable. 

 The programming examples developed later will make use of equations  (7.1) –
 (7.3) . In  (7.3)  we simply use the variable   b   in lieu of 2  b  .  

  7.2   ADAPTIVE STRUCTURES 

 A number of adaptive structures have been used for different applications in adap-
tive fi ltering. 

  1.      For noise cancellation .   Figure  7.2  shows the adaptive structure in Figure  7.1  
modifi ed for a noise cancellation application. The desired signal  d  is corrupted 
by uncorrelated additive noise  n . The input to the adaptive fi lter is a noise  n  ′  
that is correlated with the noise  n . The noise  n  ′  could come from the same 
source as  n  but modifi ed by the environment. The adaptive fi lter ’ s output  y  is 
adapted to the noise  n . When this happens, the error signal approaches the 
desired signal  d . The overall output is this error signal and not the adaptive 
fi lter ’ s output  y . If  d  is uncorrelated with  n , the strategy is to minimize  E ( e  2 ), 
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    FIGURE 7.2.     Adaptive fi lter structure for noise cancellation.  

where  E ( ) is the expected value. The expected value is generally unknown; 
therefore, it is usually approximated with a running average or with the instan-
taneous function itself. Its signal component,  E ( d  2 ), will be unaffected and only 
its noise component  E [( n     −     y ) 2 ] will be minimized. A more complete discussion 
is found in Widrow and Stearns  [1] . This structure will be further illustrated 
with programming examples using C code.    

  2.      For system identifi cation .   Figure  7.3  shows an adaptive fi lter structure that can 
be used for system identifi cation or modeling. The same input is to an unknown 
system in parallel with an adaptive fi lter. The error signal  e  is the difference 
between the response of the unknown system  d  and the response of the adap-
tive fi lter  y . This error signal is fed back to the adaptive fi lter and is used to 
update the adaptive fi lter ’ s coeffi cients until the overall output  y    =    d . When 
this happens, the adaptation process is fi nished, and  e  approaches zero. If the 
unknown system is linear and not time varying, then after the adaptation is 
complete, the fi lter ’ s characteristics no longer change. In this scheme, the adap-
tive fi lter models the unknown system. This structure is illustrated later with 
three programming examples.    

  3.      Adaptive predictor .   Figure  7.4  shows an adaptive predictor structure that can 
provide an estimate of an input. This structure is illustrated later with a pro-
gramming example.  

  4.     Additional structures have been implemented, such as:  

     (a)      Notch with two weights , which can be used to notch or cancel/reduce a 
sinusoidal noise signal. This structure has only two weights or coeffi cients. 
It is shown in Figure  7.5  and is illustrated in Refs.  1 ,  3 , and  4 .  

    FIGURE 7.3.     Adaptive fi lter structure for system identifi cation.  
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 This chapter can be used as a source of experiments, projects, and applications, 
demonstrating how the examples in earlier chapters can be combined and extended. 
It describes a number of applications and projects carried out by students (at Roger 
Williams University, the University of Massachusetts – Dartmouth, and at Worcester 
Polytechnic Institute). The descriptions are accompanied by program listings, not all 
of which are complete, but which are intended to serve as a starting point for devel-
opment of further student projects. 

 Additional ideas for projects can be found in Refs.  1 – 6 . A wide range of projects 
has been implemented on the fl oating - point C30 and C31 processors  [7 – 21]  as well 
as on the fi xed - point TMS320C25  [22 – 28] . They range in topic from communications 
and controls to neural networks and also can be used as a source of ideas to imple-
ment other projects.  

10.1 DTMF SIGNAL DETECTION USING CORRELATION,  FFT, AND 
GOERTZEL ALGORITHM 

 This project implements the detection of a dual tone multifrequency (DTMF) tone 
and is decomposed into four smaller projects. The fi rst miniproject uses a correlation 
scheme and displays the detected DTMF signals with the onboard LEDs. The 
second miniproject expands on the fi rst one and uses RTDX that provides a PC –
 DSK interface to display on the PC monitor the detected DTMF signals by the C6x 
on the DSK. The third miniproject uses the FFT to estimate the DTMF signals. The 
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fourth miniproject uses Goertzel ’ s algorithm and implements the DTMF detection 
on the C6416 DSK (can be transported readily to the C6713 DSK). The complete 
executable fi les for all four subprojects are included on the CD. 

 A DTMF signal consists of two sinusoidal signals: one from a group (row) of four 
low frequencies and the other from a group (column) of three high frequencies. This 
is illustrated in Table  10.1 . When a key is pressed from a telephone, a DTMF signal 
is generated. For example, pressing button 6 generates a tone consisting of the sum-
mation of the two tones with frequencies of 770 and 1477   Hz, as shown in Table  10.1 . 
For easier detection, these frequencies are chosen so that the sum or difference of 
any two frequencies does not equal that of any of the other frequencies.   

 Various schemes can be used to decode DTMF signals: 

  1.     A correlation scheme, as described in this fi rst miniproject. An RTDX option 
in the second miniproject provides a PC – DSK interface displaying the dialed 
(received) numbers on the PC screen.  

  2.     The FFT (or the DFT) to detect the signals corresponding to the DTMF tones. 
The FFT is used in the third miniproject to estimate the weights associated 
with the seven frequencies.  

  3.     Use of a bank of FIR fi lters so that each fi lter passes only one of the frequen-
cies. The average power at the output of two of these fi lters should be larger 
than that at the other outputs, yielding the corresponding DTMF tone (not 
used in this project).  

  4.     Use of Goertzel ’ s algorithm      [2, 22, 28, 29]  in lieu of the FFT or DFT since only 
two frequencies need be detected/selected. This method (see Appendix  F   ) can 
be more effi cient than the FFT when a  “ small ”  number of spectrum points are 
required rather than the entire spectrum.      

 Each DTMF signal can be represented as

    u t A t t( ) (sin( ) sin( ))= + + +ω ϕ ω ϕ1 1 2 2  

where   w   1  and   w   2  are the two frequencies that need to be determined, and   j   1  and   j   2  
are unknown phases. Frequency  f  1  is one of the following frequencies: 697, 770, 852, 
or 941   Hz; and frequency  f  2  is one of the following frequencies: 1209, 1336, or 1477   Hz 
 [30, 31] . 

 TABLE 10.1     DTMF Encoding 

  Frequencies    1209   Hz    1336   Hz    1477   Hz  

  697   Hz    1    2    3  
  770   Hz    4    5    6  
  852   Hz    7    8    9  
  941   Hz     *     0    #  
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  10.1.1   Using a Correlation Scheme and Onboard  LED  s  for 
Verifying Detection 

 The correlation scheme is as follows. Let the input signal be  u ( t )   =    A (sin(2  p  697 t    +  
   j   1 )   +   sin(2  p  1209 t    +     j   2 )). Since the input signal includes sin(2  p  697 t    +     j   1 ), the correla-
tion of the input signal with sin(2  p  697 t    +     j   1 ) must be higher than the correlations 
with sin(2  p  770 t    +     j   1 ), sin(2  p  852 t    +     j   1 ), and sin(2  p  941 t    +     j   1 ). The Fourier transform 
 ∫  u ( t ) e   -  j w t   dt  has a peak at 697   Hz. Using Euler ’ s formula for the exponential function, 
it becomes a correlation of  u ( t ) with sine and cosine functions. As a result, the input 
frequency can be determined by correlating the input signal with the sine and cosine 
for each possible frequency. The algorithm is as follows: 

  1.     For each frequency, fi nd the following correlations:
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  2.     For each frequency, fi nd the maximum between sine weight and cosine 
weight:
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  3.     Among the fi rst four weights, choose the largest one; and among the last three 
weights, choose the largest one:

    W W W W W1 697 770 852 941= max( , , , )  

    W W W W2 1209 1336 1477= max( , , )    

  4.     The frequencies present in the input signal can then be obtained. If both  W  1  
and  W  2 , are larger than a threshold, turn on the appropriate LEDs correspond-
ing to each character, as shown in Table  10.2 .      

 Figure  10.1  shows the C source program  partial_dtmf.c  that can be completed 
readily. Build this project as DTMF. You can test this project fi rst since the complete 
executable fi le  DTMF.out  is included on the CD in the folder DTMF. It can be tested 
using one of the following: 

  1.     A phone to create the DTMF signals and a microphone to capture these 
signals as input to the DSK ’ s mic input. Alternatively, a microphone with the 



 TABLE 10.2     Characters and 
Corresponding LEDs 

  1    0001  
  2    0010  
  3    0011  
  4    0100  
  5    0101  
  6    0110  
  7    0111  
  8    1000  
  9    1001  
   *     1010  
  0    1011  
  #    1100  

      FIGURE 10.1.     Core C program using correlation to detect DTMF tones ( partial_dtmf.c ).    

//DTMF.c Core program to decode DTMF signals and turn on LEDs
#define N 100
#define thresh 40000
short i;short buffer[N]; short sin697[N],cos697[N],sin770[N],cos770[N];
...
long weight697,weight697_sin,weight697_cos; long ...weight1477_cos;
long weight1,weight2,choice1,choice2;
interrupt void c_int11()
{
 for (i = N-1; i > 0; i--)
 buffer[i]=buffer[i-1];               // initialize buffer
 buffer[0] = input_sample();       //input into buffer
 output_sample(buffer[0]*10);    //output from buffer
 weight697_sin=0;  weight697_cos=0;     //weight @ each freq
 ...
 weight1477_sin = 0;  weight1477_cos =  0;
 for (i = 0; i < N; i++)
 {
  weight697_sin = weight697_sin + buffer[i]*sin697[i];
  weight697_cos = weight697_cos + buffer[i]*cos697[i];
 ...
  weight1477_cos= weight1477_cos + buffer[i]*cos1477[i];
 }
 //for each freq compare sine and cosine weights and choose largest
 if(abs(weight697_sin)>abs(weight697_cos))   weight697=abs(weight697_sin);
 else weight697 = abs(weight697_cos);
 ...
 if(abs(weight1477_sin)>abs(weight1477_cos)) weight1477 = abs(weight1477_sin);
 else weight1477 = abs(weight1477_cos);
 weight1=weight697; choice1=1;//among weight697,..weight941->largest
 if(weight770 > weight1) {weight1 = weight770; choice1=2;} //...
 if(weight941 > weight1) {weight1 = weight941; choice1=4;}
 weight2=weight1209; choice2=1;//among weight1209,..weight1477->largest
 if(weight1336> weight2) {weight2 = weight1336; choice2=2;} 
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 if(weight1477> weight2) {weight2 = weight1477; choice2=3;}
 if((weight1>thresh)&&(weight2>thresh)) //set threshhold
 {  // depending on choices1 and 2 turn on corresponding LEDs
 if((choice1 == 1)&&(choice2 == 1)) { //button "1" -> 0001
   DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_on(3);}
 ... //for button "2","3",..,"*","0"
 if((choice1 == 4)&&(choice2 == 3))  //button "#" -> 1100
   {DSK6713_LED_on(0);DSK6713_LED_on(1);DSK6713_LED_off(2);DSK6713_LED_off(3);}
 }  //end of if > threshold
 else { //weights below threshold, turn LEDs off
  DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);}
 return;
}
void main()
{
DSK6713_LED_init();
DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);
for (i = 0; i < N; i++)   //define sine/cosine for all 7 frequencies
 {
  buffer[i]=0;
  sin697[i]=1000*sin(2*3.14159*i/8000.*697);
  cos697[i]=1000*cos(2*3.14159*i/8000.*697);
  ...
  cos1477[i]=1000*cos(2*3.14159*i/8000.*1477);
 }
 comm_intr();  while(1); //init, infinite loop
}

FIGURE 10.1. (Continued)

necessary pre - amp can be used and connected directly to the line input on the 
DSK. For the threshold value set in the program, use 1,000,000 with the micro-
phone input option. Dial a few numbers and verify the corresponding LEDs 
turning on based on the number detected.  

  2.     Figure  10.2  shows the core of the MATLAB program   partial_dtmf.m   that 
generates/plays DTMF signals as input to the DSK. This program can be 
completed readily. Verify that all 12 DTMF signals 0, 1,       .      .      .       , # are consecutively 
generated by the MATLAB program, each lasting approximately 1.5 s. Also 
verify that the corresponding LEDs on the DSK are turned on for each 
detected DTMF signal. For the line input, use a threshold value of 40,000 in 
the program.  

  3.     A tone generator using DialpadChameleon (can be downloaded from the 
web). This provides a pad with keys to generate short DTMF signals that can 
be used as input to the DSK.        

 The length of the signal affects the reliability of detection. If the buffer size is 
too small, the probability of turning on the wrong LEDs increases because of the 
uncertainty in frequency associated with short signals. If the buffer is too long, it 
complicates the detection near the transmission points. The Dialpad signals have 
the shortest duration.  



the ( .wav ) chirp signal and verify that the results are identical to those achieved 
with the spectrogram in Figure  10.14 b, being continuously updated within MATLAB. 
The fi le  vc_spectrogramdlg.cpp  contains the MATLAB commands for plotting 
the spectrogram. However, MATLAB is not used in this version to provide the 
RTDX link.   

 As in Section  10.7.2 , you can obtain a fast and accurate plot by deleting the com-
mands for including the title and the labels within the spectrogram plot. These 
commands are in the fi le  vc_spectrogramdlg.cpp . 

 You can extend this project version using the radix - 2 FFT (in lieu of the radix - 4). 
Chapter  6  includes several examples based on the radix - 2 FFT.   

10.8 AUDIO EFFECTS (ECHO AND REVERB, HARMONICS, 
AND DISTORTION) 

 This project illustrates various audio effects such as distortion, echo and reverb, and 
harmonics  [35] . Figure  10.16  shows the core program  soundboard.c  (virtually 
complete) that implements this project. The overall program fl ow consists of pre-
amplifi cation, distortion, echo/reverb, harmonics, and postamplifi cation. Preamp and 
postamp are included to avoid overdriving the output. A sampling rate of 16   kHz is 
chosen, and a total of 10 sliders are used for the overall control. The slider gel fi le 
is on the CD in the folder soundboard .   

 The distortion effect is the simplest to implement. It requires overamplifying each 
sample and clipping it at maximum and minimum values. The acquired input sample 
is amplifi ed based on whether it is positive or negative. The amplifi cation polynomial 
used for the distortion component is used to amplify the signal in a nonlinear 
fashion. The result is scaled by a distortion magnitude controlled by a slider, then 
clipped so as not to overdrive the output. 

 The resulting output is processed for an echo/reverb effect (see  Examples 2.4  
and  2.5  on echo effects). The length of the echo is controlled by changing the 
buffer size where the samples are stored. A dynamic change of the echo length 
leads to a reverb effect. A fading effect with a decaying echo is obtained with a 
slider.

 The third effect is harmonics boost. A harmonics buffer is used for this effect. 
Two main loop sections are created to produce two separate sets of harmonics. The 
larger (outer) loop combines the input with samples from the harmonics buffer at 
twice the input frequency. The smaller (inner) loop produces the next harmonics at 
four times the input frequency. The magnitudes of the harmonics are controlled with 
a slider. 

 These effects were tested successfully using the input from a keyboard with the 
keyboard output to a speaker. The audio output is sent to both channels of the codec 
(see  Example 2.9 ), using the stereo capability of the onboard codec. The executable 
and gel fi les are included in the folder  soundboard . 

 A drum effect section is included in the program for expanding the project. The 
use of external memory must be considered when applying many effects.  
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//Soundboard.c  Core C program for sound effects
union {Uint32 uint; short channel[2];} AIC23_data;
union {Uint32 uint; short channel[2];} AIC23_input;
short EchoLengthB = 8000;  //echo delay
short EchoBuffer[8000];   //create buffer
short echo_type = 1;   //to select echo or delay
short Direction = 1;   //1->longer echo,-1->shorter
short EchoMin=0,EchoMax=0;  //shortest/longest echo time
short DistMag=0,DistortionVar=0,VolSlider=100,PreAmp=100,DistAmp=10;
short HarmBuffer[3001];   //buffer
short HarmLength=3000;   //delay of harmonics
float output2;
short DrumOn=0,iDrum=0,sDrum=0; //turn drum sound when = 1
int  DrumDelay=0,tempo=40000; //delay counter/drum tempo
short ampDrum=40;    //volume of drum sound
..                                  //addtl casting
interrupt void c_int11()       //ISR
{
AIC23_input.uint = input_sample(); //newest input data
input=(short)(AIC23_input.channel[RIGHT]+AIC23_input.channel[LEFT])/2;
input = input*.0001*PreAmp*PreAmp;
output=input;
output2=input;          //distortion section
if (output2>0)
output2=0.0035*DistMag*DistMag*DistMag*((12.35975*(float)input)
        - (0.359375*(float)input*(float)input));
else  output2 =0.0035*DistMag*DistMag*DistMag*(12.35975*(float)input
        + 0.359375*(float)input*(float)input);
output2/=(DistMag+1)*(DistMag+1)*(DistMag+1);
if (output2 > 32000.0)  output2 = 32000.0 ;
else if (output2 < -32000.0 )  output2 = -32000.0;
output= (output*(1/(DistMag+1))+output2); //overall volume slider
input = output;                           //echo/reverb section
iEcho++;                                  //increment buffer count
if (iEcho >= EchoLengthB) iEcho = 0;      //if end of buffer reinit
output=input + 0.025*EchoAmplitude*EchoBuffer[iEcho];//newest+oldest
if(echo_type==1) EchoBuffer[iEcho] = output; //for decaying echo
else EchoBuffer[iEcho]=input;   //for single echo (delay)
EchoLengthB += Direction;   //alter the echo length
if(EchoLengthB<EchoMin+100){Direction=1;} //echo delay is shortest->
if(EchoLengthB>EchoMax){Direction=-1;} //longer,if longest->shorter
input=output;     //output echo->harmonics gen
if(HarmBool==1) {     //everyother sample...
 HarmBool=0;     //switch the count
 HarmBuffer[iHarm]=input;   //store sample in buffer
 if(HarmBool2==1){     //everyother sample...
  HarmBool2=0;     //switch the count
  HarmBuffer[uHarm] += SecHarmAmp*.025*input;//store sample in buffer
 }
 else{HarmBool2=1; uHarm++;    //or just switch the count,
  if(uHarm>HarmLength) uHarm=0;  //and increment the pointer
 }
}

      FIGURE 10.16.     Core C program to obtain various audio effects ( soundboard.c ).    



else{HarmBool=1; iHarm++;    //or just switch the count
if(iHarm>HarmLength) iHarm=0;}  //and increment the pointer
output=input+HarmAmp*0.0125*HarmBuffer[jHarm];//add harmonics to output
jHarm++;      //and increment the pointer
if(jHarm>HarmLength) jHarm=0;   //reinit when maxed out
DrumDelay--;     //decrement delay counter
if(DrumDelay<1) {                    //drum section
  DrumDelay=50000-Tempo;   //if time for drumbeat
  DrumOn=1;     //turn it on
}
if(0){      //if drum is on
 output=output+(kick[iDrum])*.05*(ampDrum);//play next sample
 if((sDrum%2)==1) {iDrum++;}   //but play at Fs/2
 sDrum++;      //incr sample number
 if(iDrum>2500){iDrum=0; DrumOn=0;}  //drum off if last sample
}
output = output*.0001*VolSlider*VolSlider;
AIC23_data.channel[LEFT]=output;
AIC23_data.channel[RIGHT]=AIC23_data.channel[LEFT];
output_sample(AIC23_data.uint);     //output to both channels
}
main()          //init DSK,codec,McBSP and while(1) infinite loop 

FIGURE 10.16. (Continued)

  10.9   VOICE DETECTION AND REVERSE PLAYBACK 

 This project detects a voice signal from a microphone, then plays it back in the 
reverse direction. Figure  10.17  shows the block diagram that implements this project. 
All the necessary fi les are in the folder  detect_play . Two circular buffers are used: 
an input buffer to hold 80,000 samples (10 seconds of data) continuously being 
updated and an output buffer to play back the input voice signal in the reverse 
direction. The signal level is monitored, and its envelope is tracked to determine 
whether or not a voice signal is present.   

Buffer
#1 

HPF 
(DC-
block)

Rectify LPF 
Signal
level 
monitor 

Buffer
#2 

Input

Output

    FIGURE 10.17.     Block diagram for the detection of a voice signal from a microphone and 
playback of that signal in the reverse direction.  
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 When a voice signal appears and subsequently dies out, the signal - level monitor 
sends a command to start the playback of the accumulated voice signal, specifying 
the duration of the signal in samples. The stored data are transferred from the input 
buffer to the output buffer for playback. Playback stops when one reaches the end 
of the entire signal detected. 

 The signal - level monitoring scheme includes rectifi cation and fi ltering (using 
a simple fi rst order IIR fi lter). An indicator specifi es when the signal reaches 
an upper threshold. When the signal drops below a low threshold, the time differ-
ence between the start and end is calculated. If this time difference is less than a 
specifi ed duration, the program continues into a no - signal state (if noise only). 
Otherwise, if it is more than a specifi ed duration, a signal - detected mode is 
activated. 

 Figure  10.18  shows the DC   blocking fi lter as a fi rst - order IIR highpass fi lter. The 
coeffi cient  a  is much smaller than 1 (for a long time constant). The estimate of the 
DC   fi lter is stored as a 32 - bit integer. 

 The lowpass fi lter for the envelope detection is also implemented as a fi rst order 
IIR fi lter, similar to the DC blocking fi lter except that the output is returned directly 
rather than being subtracted from the input. The fi lter coeffi cient  a  is larger for this 
fi lter to achieve a short time contant.   

 Build and test this project as   detect_play  .  

  10.10   PHASE SHIFT KEYING —  BPSK  ENCODING AND 
DECODING WITH  PLL  

 See also the two projects on binary phase shift keying (BPSK) and modulation 
schemes in Sections  10.11  and  10.12 . This project is decomposed into smaller mini -
 projects as background for the fi nal project. The fi nal project is the transmission of 
an encoded BPSK signal with voice as input and the reception (demodulation) of 
this signal with phase - locked loop (PLL) support on a second DSK. All the fi les 
associated with these projects are located in separate subfolders within the folder 
 PSK . 

    FIGURE 10.18.     DC   blocking fi rst order IIR highpass fi lter for voice signal detection and 
reverse playback.  



10.15 SPEECH SYNTHESIS USING LINEAR PREDICTION OF 
SPEECH SIGNALS 

 Speech synthesis is based on the reproduction of human intelligible speech through 
artifi cial means  [42 – 45] . Examples of speech synthesis technology include  text - 
to - speech  systems. The creation of synthetic speech covers a range of processes; and 
even though they are often lumped under the general term text - to - speech , a lot of 
work has been done to generate speech from sequences of the speech sounds. 
This would be a speech - sound (phoneme) to audio waveform synthesis, rather than 
going from text to phonemes (speech sounds) and then to sound. One of the fi rst 
practical applications of speech synthesis was a speaking clock. It used optical storage 
for phrases and words (noun, verb, etc.), concatenated to form complete sentences. 
This led to a series of innovative products such as vocoders, speech toys, and so on. 
Advances in the understanding of the speech production mechanism in humans, 
coupled with similar advances in DSP, have had an impact on speech synthesis tech-
niques. Perhaps the most singular factors that started a new era in this fi eld were the 
computer processing and storage technologies. While speech and language were 
already important parts of daily life before the invention of the computer, the equip-
ment and technology that developed over the last several years have made it possible 
to produce machines that speak, read, and even carry out dialogs. A number of 
vendors provide both recognition and speech technology. Some of the latest applica-
tions of speech synthesis are in cellular phones, security networks, and robotics. 

 There are different methods of speech synthesis based on the source. In a text -
 to - speech system, the source is a text string of characters read by the program to 
generate voice. Another approach is to associate intelligence in the program so that 
it can generate voice without external excitation. One of the earliest techniques was 
Formant synthesis . This method was limited in its ability to represent voice with high 
fi delity due to its inherent drawback of representing phonemes by three frequencies. 
This method and several analog technologies that followed were replaced by digital 
methods. Some early digital technologies were RELP (residue excited) and VELP 
(voice excited). These were replaced by new technologies, such as LPC (linear pre-
dictive coding), CELP (code excited), and PSOLA (pitch synchronous overlap - add). 
These technologies have been used extensively to generate artifi cial voice. 

Linear Predictive Coding 
 Most methods that are used for analyzing speech start by transforming acoustic data 
into spectral form by performing short time Fourier analysis of the speech wave. 
Although this type of spectral analysis is a well - known technique for studying 
signals, its application to speech signal suffers from limitations due to the nonsta-
tionary and quasiperiodic properties of the speech wave. As a result, methods based 
on spectral analysis often do not provide a suffi ciently accurate description of 
speech articulation. Linear predictive coding (LPC) represents the speech wave-
form directly in terms of time - varying parameters related to the transfer function 
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of the vocal tract and the characteristics of the source function. It uses the knowl-
edge that any speech can be represented by certain types of parametric information, 
including the fi lter coeffi cients (that model the vocal tract) and the excitation signal 
(that maps the source signals). The implementation of LPC reduces to the calcula-
tion of the fi lter coeffi cients and excitation signals, making it suitable for digital 
implementation. 

 Speech sounds are produced as a result of acoustical excitation of the human 
vocal tract. During production of the voiced sounds, the vocal chord is excited by a 
series of nearly periodic pulses generated by the vocal cords. In unvoiced sounds, 
excitation is provided by the air passing turbulently through constrictions in the 
tract. A simple model of the vocal tract is a discrete time - varying linear fi lter. Figure 
 10.50  is a diagram of the LPC speech synthesis. To reproduce the voice signal, the 
following are required: 

  1.     An excitation signal  

  2.     The LPC fi lter coeffi cients      

 The excitation mechanism can be approximated using a residual signal generator 
(for voiced signals) or a white Gaussian noise generator (for unvoiced signals) with 
adjustable amplitudes and periods. The linear predictor  P , a transversal fi lter with 
 p  delays of one sample interval each, forms a weighted sum of past samples as the 
input of the predictor. The output of the predictor at the  n th sampling instant is 
given by

    s a sn k m n
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where  m   =   n    −    k  and   d  n   represents the  n th excitation sample.  

  Implementation 
 The input to the program is a sampled array of input speech using an 8 - kHz sam-
pling rate. The samples are stored in a header fi le. The length of the input speech 

    FIGURE 10.50.     Diagram of the speech synthesis process.  



array is 10,000 samples, translating into approximately 1.25 seconds of speech. The 
input array is segmented into a large number of frames, each 80   B long with an 
overlap of 40   B for each frame. Each frame is then passed to the following modules: 
windowing, autocorrelation, LPC, residual, IIR, and accumulate. External memory 
is utilized. A block diagram of the LPC speech synthesis algorithm with the various 
modules is shown in Figure  10.51 . 

  1.      Segmentation .   This module separates the input voice into overlapping seg-
ments. The length of the segment is such that the speech segment appears 
stationary as well as quasiperiodic. The overlap provides a smooth transition 
between consecutive speech frames.  

  2.      Windowing .   The speech waveform is decomposed into smaller frames 
using the Hamming window. This suppresses the sidelobes in the frequency 
domain.  

  3.      Levinson – Durbin algorithm .   To calculate the LPC coeffi cients, the auto-
correlation matrix of the speech frame is required. From this matrix, the LPC 
coeffi cients can be obtained using
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where  r ( i ) and  ak  represent the autocorrelation array and the coeffi cients, 
respectively.  

  4.      Residual signal .   For synthesis of the artifi cial voice, the excitation is given by 
the residual signal, which is obtained by passing the input speech frame 
through an FIR fi lter. It serves as an excitation signal for both voiced and 
unvoiced signals. This limits the algorithm due to the energy and frequency 
calculations required for making decisions about voiced/unvoiced excitation 
since, even for an unvoiced excitation that has a random signal as its source, 
the same principle of residue signal can still be used. This is because, in 
the case of unvoiced excitation, even the residue signal obtained will be 
random.  

    FIGURE 10.51.     Speech synthesis algorithm with various modules.  
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5.      Speech synthesis . With the representation of the speech frame in the form of 
the LPC fi lter coeffi cients and the excitation signal, speech can be synthesized. 
This is done by passing the excitation signal (the residual signal) through an 
IIR fi lter. The residual signal generation and the speech synthesis modules 
imitate the vocal chord and the vocal tract of the speech production system 
in humans.  

6.      Accumulation and buffering . Since speech is segmented at the beginning, the 
synthesized voice needs to be concatenated. This is performed by the accumu-
lation and buffering module.  

7.      Output . When the entire synthesized speech segment is obtained, it is played. 
During playback, the data are downsampled to 4   kHz to restore the intelligibil-
ity of the speech.       

Implementation
 The complete support fi les are on the CD in the folder  speech_syn . Generate a 
.wav  fi le of the speech sample to be synthesized. For example, include  goaway.wav
in the MATLAB fi le  input_read.m . The MATLAB fi le samples it for 8   kHz and 
stores the input samples array in the header fi le  input.h . Include this generated 
header fi le in the main C source program  speech.c . Build this project as  speech_
syn . Run the MATLAB program  input_read.m  to generate the two header fi les 
input.h  (containing the input samples) and  hamming.h  (for the Hamming coeffi -
cients). Load/run speech_syn.out  and verify the synthesized speech  “ go away ”  
from a speaker connected to the DSK output. Three other .wav  fi les are included 
in the folder and can be tested readily.  

Results
 Speech is synthesized for the following:  “ Go away, ”   “ Hello, professor, ”   “ Good 
evening, ”  and  “ Vacation. ”  The synthesized output voice is found to have consider-
able fi delity to the original speech. The voice/unvoiced speech phonemes are repro-
duced with considerable accuracy. This project can be improved with a larger buffer 
size for the samples and noise suppression fi lters. There is noise after each time the 
sentence is played. A speech recognition algorithm can be implemented in conjunc-
tion with the speech synthesis to facilitate a dialog.    

10.16 AUTOMATIC SPEAKER RECOGNITION 

 This project implements an automatic speaker recognition system  [46 – 50] .  Speaker
recognition  refers to the concept of recognizing a speaker by his/her voice or speech 
samples. This is different from speech recognition. In automatic speaker recognition, 
an algorithm generates a hypothesis concerning the speaker ’ s identity or authentic-
ity. The speaker ’ s voice can be used for ID and to gain access to services such as 
banking, voice mail, and so on. 



 Speaker recognition systems contain two main modules:  feature extraction  and 
 classifi cation . 

  1.     Feature extraction is a process that extracts a small amount of data from the 
voice signal that can be used to represent each speaker. This module converts 
a speech waveform to some type of parametric representation for further 
analysis and processing. Short - time spectral analysis is the most common 
way to characterize a speech signal. The Mel - frequency cepstrum coeffi cients 
(MFCCs) are used to parametrically represent the speech signal for the 
speaker recognition task. The steps in this process are shown in Figure  10.52 :  

     (a)     Block the speech signal into frames, each consisting of a fi xed number of 
samples.  

     (b)     Window each frame to minimize the signal discontinuities at the begin-
ning and end of the frame.  

     (c)     Use FFT to convert each frame from time to frequency domain.  

     (d)     Convert the resulting spectrum into a Mel - frequency scale.  

     (e)     Convert the Mel spectrum back to the time domain.    

  2.     Classifi cation consists of models for each speaker and a decision logic neces-
sary to render a decision. This module classifi es extracted features according 
to the individual speakers whose voices have been stored. The recorded voice 
patterns of the speakers are used to derive a classifi cation algorithm. Vector 
quantization (VQ) is used. This is a process of mapping vectors from a large 
vector space to a fi nite number of regions in that space. Each region is called 
a  cluster  and can be represented by its center, called a  codeword . The collection 
of all clusters is a  codebook . In the training phase, a speaker - specifi c VQ code-
book is generated for each known speaker by clustering his/her training acous-
tic vectors. The distance from a vector to the closest codeword of a codebook 
is called a  VQ distortion . In the recognition phase, an input utterance of an 
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    FIGURE 10.52.     Steps for speaker recognition implementation.  
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unknown voice is vector - quantized using each trained codebook, and the total 
VQ distortion is computed. The speaker corresponding to the VQ codebook 
with the smallest total distortion is identifi ed.      

 Speaker recognition can be classifi ed with identifi cation and verifi cation.  Speaker
identifi cation  is the process of determining which registered speaker provides a 
given utterance. Speaker verifi cation  is the process of accepting or rejecting the 
identity claim of a speaker. This project implements only the speaker identifi cation 
(ID) process. The speaker ID process can be further subdivided into closed set  and 
open set . The  closed set  speaker ID problem refers to a case where the speaker is 
known a priori  to belong to a set of  M  speakers. In the  open set  case, the speaker 
may be out of the set and, hence, a  “ none of the above ”  category is necessary. In 
this project, only the simpler closed set speaker ID is used. 

 Speaker ID systems can be either  text - independent  or  text - dependent . In the  text -
 independent  case, there is no restriction on the sentence or phrase to be spoken, 
whereas in the text - dependent  case, the input sentence or phrase is indexed for each 
speaker. The text - dependent system, implemented in this project, is commonly 
found in speaker verifi cation systems in which a person ’ s password is critical for 
verifying his/her identity. 

 In the  training phase , the feature vectors are used to create a model for each 
speaker. During the testing phase , when the test feature vector is used, a number 
will be associated with each speaker model indicating the degree of match with that 
speaker ’ s model. This is done for a set of feature vectors, and the derived numbers 
can be used to fi nd a likelihood score for each speaker ’ s model. For the speaker 
ID problem, the feature vectors of the test utterance are passed through all the 
speakers ’  models and the scores are calculated. The model having the best score 
gives the speaker ’ s identity (which is the decision component). 

 This project uses MFCC for feature extraction, VQ for classifi cation/training, and 
the Euclidean distance between MFCC and the trained vectors (from VQ) for 
speaker ID. Much of this project was implemented with MATLAB  [47] . 

Mel-Frequency Cepstrum Coeffi cients 
 MFCCs are based on the known variation of the human ear ’ s critical bandwidths. 
A Mel - frequency scale is used with a linear frequency spacing below 1000   Hz and 
a logarithmic spacing above that level. The steps used to obtain the MFCCs 
follow.

1.      Level detection . The start of an input speech signal is identifi ed based on a 
prestored threshold value. It is captured after it starts and is passed on to the 
framing stage.  

2.      Frame blocking . The continuous speech signal is blocked into frames of N
samples, with adjacent frames being separated by M  ( M <  N ). The fi rst frame 
consists of the fi rst  N  samples. The second frame begins  M  samples after the 



fi rst frame and overlaps it by  N    −    M  samples. Each frame consists of 256 
samples of speech signal, and the subsequent frame starts from the 100th 
sample of the previous frame. Thus, each frame overlaps with two other sub-
sequent frames. This technique is called  framing . The speech sample in one 
frame is considered to be stationary.  

  3.      Windowing .   After framing, windowing is applied to prevent spectral leakage. 
A Hamming window with 256 coeffi cients is used.  

  4.      Fast Fourier transform .   The FFT converts the time - domain speech signal into 
a frequency domain to yield a complex signal. Speech is a real signal, but its 
FFT has both real and imaginary components.  

  5.      Power spectrum calculation .   The power of the frequency domain is calculated 
by summing the square of the real and imaginary components of the signal to 
yield a real signal. The second half of the samples in the frame are ignored 
since they are symmetric to the fi rst half (the speech signal being real).  

  6.      Mel - frequency wrapping .   Triangular fi lters are designed using the Mel - 
frequency scale with a bank of fi lters to approximate the human ear. The 
power signal is then applied to this bank of fi lters to determine the frequency 
content across each fi lter. Twenty fi lters are chosen, uniformly spaced in the 
Mel - frequency scale between 0 and 4   kHz. The Mel - frequency spectrum is 
computed by multiplying the signal spectrum with a set of triangular fi lters 
designed using the Mel scale. For a given frequency  f , the mel of the frequency 
is given by

    B f f( ) [ / ]= +1125 1 700ln( ) mels   

 If  m  is the mel, then the corresponding frequency is

    B m m− = −1 700 1125 700( ) [ exp( / ) ] Hz   

 The frequency edge of each fi lter is computed by substituting the correspond-
ing mel. Once the edge frequencies and the center frequencies of the fi lter are 
found, boundary points are computed to determine the transfer function of 
the fi lter.  

  7.      Mel - frequency cepstrum coeffi cients .   The log mel spectrum is converted back 
to time. The discrete cosine transform (DCT) of the log of the signal yields 
the MFCCs.     

  Speaker Training —  VQ  
 VQ is a process of mapping vectors from a large vector space to a fi nite number of 
regions in that space. Each region is called a  cluster  and can be represented by its 
center, the codeword. As noted earlier, a codebook is the collection of all the clus-
ters. An example of a one - dimensional VQ has every number less than  − 2 approxi-
mated by  − 3; every number between  − 2 and 0 approximated by  − 1; every number 
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between 0 and 2 approximated by +1; and every number greater than 2 approxi-
mated by +3. These approximate values are uniquely represented by 2 bits, yielding 
a one - dimensional, 2 - bit VQ. An example of a two - dimensional VQ consists of 16 
regions and 16 stars, each of which can be uniquely represented by 4 bits (a two -
 dimensional 4 - bit VQ). Each pair of numbers that fall into a region are approxi-
mated by a star associated with that region. The stars are called codevectors , and 
the regions are called encoding regions . The set of all the codevectors is called the 
codebook , and the set of all encoding regions is called the  partition  of the space.  

Speaker Identifi cation (Using Euclidean Distances) 
 After computing the MFCCs, the speaker is identifi ed using a set of trained vectors 
(samples of registered speakers) in an array. To identify the speaker, the Euclidean 
distance between the trained vectors and the MFCCs is computed for each trained 
vector. The trained vector that produces the smallest Euclidean distance is identifi ed 
as the speaker.  

Implementation
 The design is fi rst tested with MATLAB. A total of eight speech samples from eight 
different people (eight speakers, labeled S1 to S8) are used to test this project. Each 
speaker utters the same single digit, zero , once in a training session (then also in a 
testing session). A digit is often used for testing in speaker recognition systems 
because of its applicability to many security applications. This project was imple-
mented on the C6711 DSK and can be transported to the C6713 DSK. Of the eight 
speakers, the system identifi ed six correctly (a 75% identifi cation rate). The identi-
fi cation rate can be improved by adding more vectors to the training codewords. 
The performance of the system may be improved by using two - dimensional or four -
 dimensional VQ (training header fi le would be 8    ×    20    ×    4) or by changing the 
quantization method to dynamic time wrapping or hidden Markov modeling. A 
readme  fi le to test this project is on the CD in the folder  speaker_recognition , 
along with all the appropriate support fi les. These support fi les include several 
modules for framing and windowing, power spectrum, threshold detection, VQ, and 
the Mel - frequency spectrum.    

10.17 m -LAW FOR SPEECH COMPANDING 

 An analog input such as speech is converted into digital form and compressed into 
8 - bit data.  m  - Law  encoding  is a nonuniform quantizing logarithmic compression 
scheme for audio signals. It is used in the United States to compress a signal into a 
logarithmic scale when coding for transmission. It is widely used in the telecommu-
nications fi eld because it improves the SNR without increasing the amount of 
data.

 The dynamic range increases, while the number of bits for quantization remains 
the same. Typically, m  - law compressed speech is carried in 8 - bit samples. It carries 
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